Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMEC and CEA-LETI gear up cost-effective silicon photonics prototyping service

03.09.2008
IMEC and CEA-LETI launch ePIXfab, the continuation of their successful multi-project wafer silicon photonics prototyping service started in 2006.

Co-funded by the European Union through the Seventh Framework Program and coordinated by IMEC, ePIXfab aims at reducing the large barriers for access to and market take-up of silicon photonics technology by focusing on reduced cost, risk and design effort, education, and roadmapping.

With their joint initiative ePIXfab, IMEC and CEA-LETI continue to offer a cost-effective way for researchers and SMEs (small and medium sized enterprises) to prototype photonic integrated circuits in silicon. ePIXfab organizes shuttle (also called multi project wafer) fabrication runs with IMEC and LETI wafer-scale technologies, including 193nm deep-UV lithography-based processes. Now, IMEC and LETI have agreed to significantly extend this service to enable a broader market take-up of silicon photonic IC technology. Dedicated prototyping and small-volume manufacturing is also possible based on IMEC or LETI technology.

A wider offer

Starting in September 2008, the PhotonFAB project will provide the ePIXfab service with a more extensive technology portfolio, new design libraries, education and training for the clients, a shuttle service roadmap and a more streamlined operation. Funded by the European Union as a FP7 Support Action, PhotonFAB will in this way lower the design effort, risk and bare costs for the clients. In addition, clients from countries fully associated to the FP7 program will be able to get additional cost reductions for the shuttle service and training activities.

Silicon photonics IC technology enables versatile and highly functional integrated circuits that handle light information. Photonic integrated circuits are used in applications such as communication networks, sensors, monitoring and bio-analysis. Using silicon allows to increase the functionality of a photonic chip by several orders of magnitude. By manufacturing with CMOS technology, the chips are reliable and can be used in volume applications.

Since 2006, thanks to the collaboration between IMEC and CEA-LETI, over 25 academic and SME groups have been able to perform their research and develop their IC technology in a fabless way with reduced costs, by joining many IC designs in a single fabrication run.

Information sessions

ePIXfab will organize two information sessions for its fabrication service and on the PhotonFAB project: one at the IEEE Group IV Photonics conference, September 17-19 2008, Sorrento, Italy, and a second one at the European Conference and Exhibition on Optical Communication 2008 (ECOC), September 21-25 2008, Brussels, Belgium

Detailed information on these events and the ePIXfab services is available from www.epixfab.eu

Katrien Marent | alfa
Further information:
http://www.imec.be
http://www2.imec.be/imec_com/imec-and-cea-leti-gear-up-cost-effective_.php
http://www-leti.cea.fr

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>