Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging Fuel Injectors with Neutrons

17.09.2014

Blowing bubbles may be fun for kids, but for engineers, bubbles can disrupt fluid flow and damage metal.

Researchers from the Fuels, Engines and Emissions Research Center at the Department of Energy’s Oak Ridge National Laboratory and collaborators from ORNL’s High Flux Isotope Reactor – a DOE Office of Science User Facility – are using neutrons to study the formation of these damage-causing bubbles in fuel injectors.


Derek Splitter and Eric Nafziger from the Fuels, Engines and Emissions Research Center at Oak Ridge National Laboratory prepare their fuel injector test system for experiments at the High Flux Isotope Reactor. They used the neutron beam at HFIR to non-destructively study the internal structure of fuel injectors for gasoline vehicles so that the internal fluid flow could be modeled based on the imaged components. Image credit: Genevieve Martin/ORNL

This team is attempting to make the first-ever neutron images of cavitation, the physical event that leads to bubble/gas formation, inside the body of a gasoline fuel injector. In August, they conducted their research at HFIR’s CG-1D beam line, which is used for neutron radiography and computed tomography, to non-destructively study the internal structure of the fuel injector. With data in hand, they will be diving deep into the analysis of the images to identify both the location and the timing of the cavitation.

“We can measure the spray of a fuel injector using X-rays, but imaging the internal structure in operation is very challenging,” said Hassina Bilheux, HFIR instrument scientist for CG-1D.

The team, led by Eric Nafziger, Derek Splitter and Todd Toops from FEERC/ORNL under a Laboratory Directed Research and Development project, studied a spray-guided gasoline direct-injection (SGDI) unmodified 6-hole injector. SGDI systems are a relatively new technology that have been developed to more precisely control fuel delivery to each cylinder and allow reduced fuel consumption in gasoline engines.

“There's a lot that is not understood about these systems, and thus a lot to be learned,” Toops said. “Our work is focused on identifying the time and location of cavitation events – to study the injector with the ability to see cavitation in action.”

A cavitation event is when a gas bubble forms in the injectors, disrupting the spray pattern and ultimately deteriorating the injector material properties.

“Neutrons are ideally suited for this study due to their high sensitivity to hydrogen atoms in the fuel and low interactions with the metal part of the injector,” said Bilheux.

Other complementary research has been done with lasers, X-rays and even with fuel injectors made partially with acrylic to make them see-through. However, those experiments had temperature and pressure limitations. This neutron technique, explained Toops, is the first to have the potential to see what’s happening inside the injector at normal operating conditions.

In order to create an experiment that closely mimics natural conditions of an engine running, Nafziger, Splitter and Toops developed a closed loop fuel injection system designed to operate with commercial and prototype injectors and deliver fuel to the injectors at pressures up to 120 atmospheres.

With 48 hours of observations for a given operating condition, they compiled approximately 1 million injection events to capture a 7 millisecond composite injection sequence, with 1 millisecond before injection, 1 millisecond of injection, and 5 milliseconds after injection. This compilation was accomplished with a 0.02 millisecond time resolution.

“In the initial analysis of the composite neutron images, it is possible to see both internal injector motion and the spray exiting the nozzle,” said Nafziger. “Just inside the nozzle area, a marked difference in fluid density is also observed during the injection event, indicating vaporization of the fluid and possible cavitation.”

The team is working on more detailed analysis of the data, and will collaborate with the ORNL high performance computing team for fluid dynamics modeling as part of the second year of their project.

UT-Battelle manages ORNL for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of the time. For more information, please visit science.energy.gov.

Kathie Bethea | newswise

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>