Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hywind: Siemens and StatoilHydro install first floating wind turbine

12.06.2009
StatoilHydro and Siemens installed the world’s first large-scale floating wind turbine.

The turbine is located approximately 12 km south east of Karmøy in Norway at a water depth of about 220 meters. The Hywind project was developed by StatoilHydro, and Siemens supplied the SWT-2.3 MW wind turbine with a rotor diameter of 82 meters.

Over the next two years the floating wind turbine will be tested to provide a thorough analysis of this innovative concept. The Hywind turbine will be connected to the local grid and is expected to start producing power in mid-July.

Hywind is designed to be suitable for installation in water depths between 120-700 m, which could open up for many new possibilities within offshore wind turbine technology. Existing offshore turbines are mounted firmly on the seabed. However, foundations become very expensive at water depths of more than 30-50 m. This might limit the large scale exploitation of offshore wind power particularly in countries with little or now shallow water areas near the coast line. “Hywind could open for new opportunities for exploitation of offshore wind power, as the turbines could be placed much more freely than before”, says Henrik Stiesdal, CTO of the Siemens Wind Power Business Unit.

The wind turbine supplied by Siemens is a SWT-2.3-82 with a 65 meter hub height. StatoilHydro is responsible for the floating structure, which consists of a steel floater filled with ballast. This floating element extends 100 m beneath the surface and is fastened to the seabed by three anchor wires.

StatoilHydro and Siemens have jointly developed a special control system for the Hywind turbine to address the special operating conditions of a floating structure. In particular, the advanced control system takes advantage of the turbine’s ability to dampen out part of the wave-induced motions of the floating system.

“Just as when we built the world’s first offshore wind farm 18 years ago this project has its particular challenges”, said Stiesdal. “We have created an advanced system that we trust will be capable of managing the special operating conditions of the floating turbine. Now as then, Siemens is demonstrating its innovative capabilities, and now as then, we are hopeful that this could lead to the opening of a complete new business area.”

Siemens today is the market leader in offshore wind power with more than 600 MW installed in 7 projects and an order backlog of 3.300 MW. Wind turbine plants are an important component of the Siemens environmental portfolio, which earned the company revenues of nearly EUR19 billion in fiscal 2008, roughly a quarter of Siemens total revenues.

The Siemens Energy Sector is the world’s leading supplier of a complete spectrum of products, services and solutions for the generation, transmission and distribution of power and for the extraction, conversion and transport of oil and gas. In fiscal 2008 (ended September 30), the Energy Sector had revenues of approximately EUR22.6 billion and received new orders totaling approximately EUR33.4 billion and posted a profit of EUR1.4 billion. On September 30, 2008, the Energy Sector had a work force of approximately 83,500.

Siemens AG
Press Office Energy
Dietrich Biester
Tel. +49 9131/7-33559
Fax: +49 9131/7-33615
mailto:dietrich.biester@siemens.com
Reference Number: ERE 200906.064 e

Dietrich Biester | Siemens Energy
Further information:
http://www.siemens.com/energy

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>