Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hywind: Siemens and StatoilHydro install first floating wind turbine

12.06.2009
StatoilHydro and Siemens installed the world’s first large-scale floating wind turbine.

The turbine is located approximately 12 km south east of Karmøy in Norway at a water depth of about 220 meters. The Hywind project was developed by StatoilHydro, and Siemens supplied the SWT-2.3 MW wind turbine with a rotor diameter of 82 meters.

Over the next two years the floating wind turbine will be tested to provide a thorough analysis of this innovative concept. The Hywind turbine will be connected to the local grid and is expected to start producing power in mid-July.

Hywind is designed to be suitable for installation in water depths between 120-700 m, which could open up for many new possibilities within offshore wind turbine technology. Existing offshore turbines are mounted firmly on the seabed. However, foundations become very expensive at water depths of more than 30-50 m. This might limit the large scale exploitation of offshore wind power particularly in countries with little or now shallow water areas near the coast line. “Hywind could open for new opportunities for exploitation of offshore wind power, as the turbines could be placed much more freely than before”, says Henrik Stiesdal, CTO of the Siemens Wind Power Business Unit.

The wind turbine supplied by Siemens is a SWT-2.3-82 with a 65 meter hub height. StatoilHydro is responsible for the floating structure, which consists of a steel floater filled with ballast. This floating element extends 100 m beneath the surface and is fastened to the seabed by three anchor wires.

StatoilHydro and Siemens have jointly developed a special control system for the Hywind turbine to address the special operating conditions of a floating structure. In particular, the advanced control system takes advantage of the turbine’s ability to dampen out part of the wave-induced motions of the floating system.

“Just as when we built the world’s first offshore wind farm 18 years ago this project has its particular challenges”, said Stiesdal. “We have created an advanced system that we trust will be capable of managing the special operating conditions of the floating turbine. Now as then, Siemens is demonstrating its innovative capabilities, and now as then, we are hopeful that this could lead to the opening of a complete new business area.”

Siemens today is the market leader in offshore wind power with more than 600 MW installed in 7 projects and an order backlog of 3.300 MW. Wind turbine plants are an important component of the Siemens environmental portfolio, which earned the company revenues of nearly EUR19 billion in fiscal 2008, roughly a quarter of Siemens total revenues.

The Siemens Energy Sector is the world’s leading supplier of a complete spectrum of products, services and solutions for the generation, transmission and distribution of power and for the extraction, conversion and transport of oil and gas. In fiscal 2008 (ended September 30), the Energy Sector had revenues of approximately EUR22.6 billion and received new orders totaling approximately EUR33.4 billion and posted a profit of EUR1.4 billion. On September 30, 2008, the Energy Sector had a work force of approximately 83,500.

Siemens AG
Press Office Energy
Dietrich Biester
Tel. +49 9131/7-33559
Fax: +49 9131/7-33615
mailto:dietrich.biester@siemens.com
Reference Number: ERE 200906.064 e

Dietrich Biester | Siemens Energy
Further information:
http://www.siemens.com/energy

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>