Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human-robot interaction: sensor-controlled assembly

18.03.2014

At a joint stand of the European research initiative SMErobotics, scientists from Fraunhofer IPA will demonstrate a sensor-controlled lightweight assembly robot that allows the high-quality, profitable automation of previously manual assembly processes, especially in the small-scale production sector.

The focus is on effective human-robot interaction at a workstation similar to those on a shop floor, the goal being to enable the worker to easily program the robot and use it intuitively like a tool.


Sensor-controlled assembly.

Image credit: Fraunhofer IPA

Growing cost pressure, short product life cycles and high product diversity call for flexible and cost-effective assembly systems that can be quickly adapted to suit changed requirements. Scientists at Fraunhofer IPA have developed a sensor-controlled assembly process that makes it possible for workpieces to be localized and positioned.

Work-holding fixtures are extensively replaced by sensors, this offering flexibility at low cost. Other advantages are that the robot is designed to be easily programmable and capable of dealing with tolerances.

Using a robot as a tool

“Our aim is to demonstrate that sensor-controlled robots are capable of coping with modern-day conditions at manual assembly workstations, such as chaotically arranged components,” says Martin Naumann, Group Leader in the Robot and Assistance Systems department at Fraunhofer IPA. The emphasis is on effective human-robot interaction. Selected assembly processes are carried out manually, while others are automated. The robot is intended to be used as a tool.

At the joint stand of the European research initiative SMErobotics, Fraunhofer IPA will demonstrate sensor-controlled assembly in a robot cell with the KUKA LBR iiwa. “At a manual workstation, we’ll use the lightweight robot to carry out riveting processes as an example.

However, the underlying concepts can equally well be applied to other assembly processes,” explains Naumann. The components are made available within the robot’s working area without the need for any separate work-holding fixture.

The robot moves to the determined location and localizes the exact riveting position on the component using a stereo camera integrated in the robotic tool. “We’re highly interested in transferring the exhibited solution to new applications – especially at small and medium-sized manufacturing enterprises, where manual work processes prevail,” says Naumann.

More at Automatica – 6th International Trade Fair for Automation and Mechatronics
3 to 6 June 2014
New Trade Fair Centre Munich
Hall A4 | Stand 131

Weitere Informationen:

http://www.automatica-munich.com
http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut

Further reports about: Automation Automatisierung IPA Produktionstechnik SMErobotics Trade cycles pressure processes

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>