Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Home’s Electrical Wiring Acts as Antenna to Receive Low-Power Sensor Data

17.09.2010
If these walls had ears, they might tell a homeowner some interesting things. Like when water is dripping into an attic crawl space, or where an open window is letting hot air escape during winter.

The walls do have ears, thanks to a device that uses a home’s electrical wiring as a giant antenna. Sensors developed by researchers at the University of Washington and the Georgia Institute of Technology use residential wiring to transmit information to and from almost anywhere in the home, allowing for wireless sensors that run for decades on a single watch battery. The technology, which could be used in home automation or medical monitoring, will be presented this month at the Ubiquitous Computing conference in Copenhagen, Denmark.

Low-cost sensors recording a building’s temperature, humidity, light level or air quality are central to the concept of a smart, energy-efficient home that automatically adapts to its surroundings. But that concept has yet to become a reality.

“When you look at home sensing, and home automation in general, it hasn’t really taken off,” said principal investigator Shwetak Patel, a UW assistant professor of computer science and and of electrical engineering. “Existing technology is still power hungry, and not as easy to deploy as you would want it to be.”

That’s largely because today’s wireless devices either transmit a signal only several feet, Patel said, or consume so much energy they need frequent battery replacements.

“Here, we can imagine this having an out-of-the-box experience where the device already has a battery in it, and it’s ready to go and run for many years,” Patel said. Users could easily sprinkle dozens of sensors throughout the home, even behind walls or in hard-to-reach places like attics or crawl spaces.

Patel’s team has devised a way to use copper electrical wiring as a giant antenna to receive wireless signals at a set frequency. A low-power sensor placed within 10 to 15 feet of electrical wiring can use the antenna to send data to a single base station plugged in anywhere in the home.

The device is called Sensor Nodes Utilizing Powerline Infrastructure, or SNUPI. It originated when Patel and co-author Erich Stuntebeck were doctoral students at Georgia Tech and worked with thesis adviser Gregory Abowd to develop a method using electrical wiring to receive wireless signals in a home. They discovered that home wiring is a remarkably efficient antenna at 27 megahertz. Since then, Patel's team at the UW has built the actual sensors and refined this method. Other co-authors are UW’s Gabe Cohn, Jagdish Pandey and Brian Otis.

Cohn, a UW doctoral student in electrical engineering, was lead student researcher and tested the system. In a 3,000-square-foot house he tried five locations in each room and found that only 5 percent of the house was out of the system’s range, compared to 23 percent when using over-the-air communication at the same power level. Cohn also discovered some surprising twists – that the sensors can transmit near bathtubs because the electrical grounding wire is typically tied to the copper plumbing pipes, that a lamp cord plugged into an outlet acts as part of the antenna, and that outdoor wiring can extend the sensors’ range outside the home.

While traditional wireless systems have trouble sending signals through walls, this system actually does better around walls that contain electrical wiring.

Most significantly, SNUPI uses less than 1 percent of the power for data transmission compared to the next most efficient model.

“Existing nodes consumed the vast majority of their power, more than 90 percent, in wireless communication,” Cohn said. “We’ve flipped that. Most of our power is consumed in the computation, because we made the power for wireless communication almost negligible.”

The existing prototype uses UW-built custom electronics and consumes less than 1 milliwatt of power when transmitting, with less than 10 percent of that devoted to communication. Depending on the attached sensor, the device could run continuously for 50 years, much longer than the decade-long shelf life of its battery.

“Basically, the battery will start to decompose before it runs out of power,” Patel said.

Longer-term applications might consider using more costly medical-grade batteries, which have a longer shelf life. The team is also looking to reduce the power consumption even further so no battery would be needed. They say they’re already near the point where solar energy or body motion could provide enough energy.

The researchers are commercializing the base technology, which they believe could be used as a platform for a variety of sensing systems.

Another potential application is in health care. Medical monitoring needs a compact device that can sense pulse, blood pressure or other properties and beam the information back to a central database, without requiring patients to replace the batteries.

The technology does not interfere with electricity flow or with other emerging systems that use electrical wiring to transmit Ethernet signals between devices plugged into two outlets.

For more information, contact Patel at 206-543-3451 or shwetak@cs.washington.edu. More information on the SNUPI project is at http://ubicomplab.cs.washington.edu/wiki/SNUPI.

Patel’s group is also presenting a system that uses electrical noise to monitor energy use in the home, which is now owned by Belkin International, Inc. through an acquisition earlier this year.

The group also will present a device, powered by water pressure changes, that can use these changes in pressure to monitor water consumption throughout the home from a single point.

All three presentations will be in the Home Infrastructure session Tuesday, Sept. 28 from 2 p.m. to 3:30 p.m. Central European time. The conference website is http://www.ubicomp2010.org/

Hannah Hickey | Newswise Science News
Further information:
http://www.uw.edu

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>