Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Home’s Electrical Wiring Acts as Antenna to Receive Low-Power Sensor Data

17.09.2010
If these walls had ears, they might tell a homeowner some interesting things. Like when water is dripping into an attic crawl space, or where an open window is letting hot air escape during winter.

The walls do have ears, thanks to a device that uses a home’s electrical wiring as a giant antenna. Sensors developed by researchers at the University of Washington and the Georgia Institute of Technology use residential wiring to transmit information to and from almost anywhere in the home, allowing for wireless sensors that run for decades on a single watch battery. The technology, which could be used in home automation or medical monitoring, will be presented this month at the Ubiquitous Computing conference in Copenhagen, Denmark.

Low-cost sensors recording a building’s temperature, humidity, light level or air quality are central to the concept of a smart, energy-efficient home that automatically adapts to its surroundings. But that concept has yet to become a reality.

“When you look at home sensing, and home automation in general, it hasn’t really taken off,” said principal investigator Shwetak Patel, a UW assistant professor of computer science and and of electrical engineering. “Existing technology is still power hungry, and not as easy to deploy as you would want it to be.”

That’s largely because today’s wireless devices either transmit a signal only several feet, Patel said, or consume so much energy they need frequent battery replacements.

“Here, we can imagine this having an out-of-the-box experience where the device already has a battery in it, and it’s ready to go and run for many years,” Patel said. Users could easily sprinkle dozens of sensors throughout the home, even behind walls or in hard-to-reach places like attics or crawl spaces.

Patel’s team has devised a way to use copper electrical wiring as a giant antenna to receive wireless signals at a set frequency. A low-power sensor placed within 10 to 15 feet of electrical wiring can use the antenna to send data to a single base station plugged in anywhere in the home.

The device is called Sensor Nodes Utilizing Powerline Infrastructure, or SNUPI. It originated when Patel and co-author Erich Stuntebeck were doctoral students at Georgia Tech and worked with thesis adviser Gregory Abowd to develop a method using electrical wiring to receive wireless signals in a home. They discovered that home wiring is a remarkably efficient antenna at 27 megahertz. Since then, Patel's team at the UW has built the actual sensors and refined this method. Other co-authors are UW’s Gabe Cohn, Jagdish Pandey and Brian Otis.

Cohn, a UW doctoral student in electrical engineering, was lead student researcher and tested the system. In a 3,000-square-foot house he tried five locations in each room and found that only 5 percent of the house was out of the system’s range, compared to 23 percent when using over-the-air communication at the same power level. Cohn also discovered some surprising twists – that the sensors can transmit near bathtubs because the electrical grounding wire is typically tied to the copper plumbing pipes, that a lamp cord plugged into an outlet acts as part of the antenna, and that outdoor wiring can extend the sensors’ range outside the home.

While traditional wireless systems have trouble sending signals through walls, this system actually does better around walls that contain electrical wiring.

Most significantly, SNUPI uses less than 1 percent of the power for data transmission compared to the next most efficient model.

“Existing nodes consumed the vast majority of their power, more than 90 percent, in wireless communication,” Cohn said. “We’ve flipped that. Most of our power is consumed in the computation, because we made the power for wireless communication almost negligible.”

The existing prototype uses UW-built custom electronics and consumes less than 1 milliwatt of power when transmitting, with less than 10 percent of that devoted to communication. Depending on the attached sensor, the device could run continuously for 50 years, much longer than the decade-long shelf life of its battery.

“Basically, the battery will start to decompose before it runs out of power,” Patel said.

Longer-term applications might consider using more costly medical-grade batteries, which have a longer shelf life. The team is also looking to reduce the power consumption even further so no battery would be needed. They say they’re already near the point where solar energy or body motion could provide enough energy.

The researchers are commercializing the base technology, which they believe could be used as a platform for a variety of sensing systems.

Another potential application is in health care. Medical monitoring needs a compact device that can sense pulse, blood pressure or other properties and beam the information back to a central database, without requiring patients to replace the batteries.

The technology does not interfere with electricity flow or with other emerging systems that use electrical wiring to transmit Ethernet signals between devices plugged into two outlets.

For more information, contact Patel at 206-543-3451 or shwetak@cs.washington.edu. More information on the SNUPI project is at http://ubicomplab.cs.washington.edu/wiki/SNUPI.

Patel’s group is also presenting a system that uses electrical noise to monitor energy use in the home, which is now owned by Belkin International, Inc. through an acquisition earlier this year.

The group also will present a device, powered by water pressure changes, that can use these changes in pressure to monitor water consumption throughout the home from a single point.

All three presentations will be in the Home Infrastructure session Tuesday, Sept. 28 from 2 p.m. to 3:30 p.m. Central European time. The conference website is http://www.ubicomp2010.org/

Hannah Hickey | Newswise Science News
Further information:
http://www.uw.edu

More articles from Power and Electrical Engineering:

nachricht Failures in power grids: Dynamically induced cascades
25.05.2018 | Technische Universität Dresden

nachricht Beyond the limits of conventional electronics: stable organic molecular nanowires
24.05.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>