Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Home Energy Savings Are Made in the Shade

11.05.2009
Trees positioned to shade the west and south sides of a house may decrease summertime electric bills by 5 percent on average, according to a recent study* of California homes by researchers from the National Institute of Standards and Technology (NIST) and the U.S. Department of Agriculture (USDA).

The first large-scale study of its kind, the research paper considers the effects of shade on 460 single-family homes in Sacramento during the summer of 2007 and provides hard statistics showing how well-placed shade trees can reduce energy costs and atmospheric carbon, as well.

“People have known for a long time that trees have multiple benefits for people, but we’ve quantified one of them for the first time using actual billing data and put a dollar value on it,” said NIST’s David Butry, who authored the paper with Geoffrey Donovan of the USDA Forest Service’s Pacific Northwest Research Station.

The study’s findings included:

Planting trees on the west and south sides of a house decreased summertime electricity use, but planting them on the north actually increased it. Those on the east had no effect.

Fast-growing trees provide better help than do smaller ones, and placement of the trees, particularly the distance from the house, is a significant factor.

A London plane tree, planted on the west side of a house, can reduce carbon emissions from summertime electricity use by an average of 31 percent over 100 years.

This last finding was particularly significant to Butry, who said that trees not only reduce the carbon produced by the local gas or coal-fired power generator, but also remove carbon dioxide—a greenhouse gas—from the atmosphere.

“Trees sequester carbon in addition to providing shade,” Butry said. “We measured how much these shade trees reduced the carbon created by burning fuels to produce the electricity, and found that the trees also sequestered an equivalent amount of carbon on top of that. So there’s a double benefit.”

Utility companies from as far away as South Korea and South Africa have contacted the team about expanding the study, which was limited to a single season in a single city.

“It would be really interesting to look at how the effect varies across regions of the U.S. and of the world, and to see what happens in wintertime,” Butry said. “Sacramento Municipal Utility was very helpful in providing us with the data we needed. But future studies will depend on who has data and shares it with us.”

* G.H. Donovan and D.T. Butry. The value of shade: Estimating the effect of urban trees on summertime electricity use. Energy and Buildings June, 2009, 662-668. doi: 10.1016/j.enbuild.2009.01.002.

Chad Boutin | Newswise Science News
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Filter may be a match for fracking water
26.09.2017 | Swansea University

nachricht Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent
25.09.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>