Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High temperature capacitor could pave the way for electric vehicle

07.08.2013
Scientists at the National Physical Laboratory are helping to create electronics capabilities for electric vehicles, with the development of a high temperature capacitor.

Electric Vehicles (EV) are hoped to represent more than 50% of worldwide light duty vehicle sales by 2050. The absence of suitable capacitors is one of the major barriers to meeting this goal.

Capacitors are a means of storing energy and are vital to the process of converting DC power from the vehicle battery, into AC power required to drive the motor. Current capacitors do not meet the EV requirements, due to an inability to function reliably under the high temperatures created in electric vehicles.

NPL have overcome this issue, as part of a Technology Strategy Board funded project. The outcome is a capacitor, called HITECA, that can operate close to normal efficiency at over 200oC, significantly higher than any other capacitor on the market. It also offers a high energy density - the measure of how much energy it can store.

The upshot for the electrical vehicle driver could mean an increased mileage range, reduced maintenance, and an enhanced driving feel.

To develop the capacitor, NPL investigated a range of lead-free materials that could have the desired properties to develop into a high temperature capacitor.

The scientists explored different compositions and different ways of fabricating them. They measured current at a range of high temperatures using advanced measurement techniques. The most promising materials were optimised to achieve the desired properties. The resulting capacitor is created from a ceramic, based on doped-BiFeO3 compound.

Tatiana Correia, lead scientist on the project, said: "The opportunities for electric vehicles are huge, both financially and environmentally, but they are currently being held back by a few technical issues. With this high temperature capacitor we believe we have solved an important one of those issues and will play a vital part in the move towards mass market electric vehicles."

A recent Frost & Sullivan Report shows that capacitors represent a £10bn global market in the automotive industry alone. This capacitor also has huge potential in other areas of high temperature electronics for other industries, for example: pulsed power applications (defibrillators and x-ray generators), energy conversion in photovoltaics and integrated circuits, downhole power electronics in oil and gas industry, which need to work at high temperatures or are subject to overheating.

The project has also allowed NPL to develop a range of new capabilities in metrology to assess energy and power in capacitors across a temperature range, which it will be offering as a new service.

The capacitor was developed as part of the Technology Strategy Board Project, Advanced Capacitors for Energy Storage (ACES). NPL are interested in hearing from industrial partners interested in licensing the innovation. NPL led the project and partners included Queens University of Belfast, Queen Mary University, Syfer and Valeo.

NPL is keen to hear from industry partners who are interested in licensing this technology. Interested parties should contact:

Tatiana Correia
tatiana.correia@npl.co.uk
Tel: +44 (0) 20 8943 8539

David Lewis | EurekAlert!
Further information:
http://www.npl.co.uk

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>