Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Speed Method to Aid Search for Solar Energy Storage Catalysts

30.05.2012
Eons ago, nature solved the problem of converting solar energy to fuels by inventing the process of photosynthesis.

Plants convert sunlight to chemical energy in the form of biomass, while releasing oxygen as an environmentally benign byproduct. Devising a similar process by which solar energy could be captured and stored for use in vehicles or at night is a major focus of modern solar energy research.

“It is widely recognized that solar energy is the most abundant source of energy on the planet,” explains University of Wisconsin-Madison chemistry professor Shannon Stahl. “Although solar panels can convert sunlight to electricity, the sun isn't always shining.”

Thus, finding an efficient way to store solar energy is a major goal for science and society. Efforts today are focused on electrolysis reactions that use sunlight to convert water, carbon dioxide, or other abundant feedstocks into chemicals that can be stored for use any time.

A key stumbling block, however, is finding inexpensive and readily available electrocatalysts that facilitate these solar-driven reactions. Now, that quest for catalysts may become much easier thanks to research led by Stahl and UW-Madison staff scientist James Gerken and their colleagues.

Writing this week in the journal Angewandte Chemie, the Wisconsin group describes a new high-throughput method to identify electrocatalysts for water oxidation.

Efficient, earth-abundant electrocatalysts that facilitate the oxidation of water are critical to the production of solar fuels, says Gerken. "If we do this well enough, we can keep the party going all night long."

Existing technology to store solar energy is not economicallyviable because using the sun to split water into oxygen and hydrogen is inefficient. Water oxidation provides electrons and protons needed for hydrogen production, and better catalysts minimize the energy lost when converting energy from sunlight to chemical fuels, says Stahl.

In addition to being efficient, the catalysts need to be made from materials that are more abundant and far less expensive than metals like platinum and the rare earth compounds currently found in the most effective catalysts.

According to Stahl and Gerken, the discovery of promising electrocatalytic materials is hindered by the costly and laborious approaches used to discover them. What’s more, the sheer number of possible catalyst compositions far exceeds the number that can be tested using traditional methods.

In the Angewandte Chemie report, Gerken, Stahl and their colleagues describe a screening method capable of rapidly evaluating potential new electrocatalysts. In simple terms, the technique works using ultraviolet light and a fluorescent paint to test prospective metal-oxide electrocatalysts. A camera captures images from a grid of candidate catalysts during the electrolysis process, as the paint responds to the formation of oxygen. This approach turns out to be a highly efficient way to sort through many compounds in parallel to identify promising leads.

Already, the Wisconsin team has identified several new metal-oxide catalysts that are composed of inexpensive materials such as iron, nickel and aluminum, and that hold promise for use in solar energy storage.

In addition to Gerken and Stahl, authors of the new study include Jamie Y.C. Chen, Robert C. Massé, and Adam B. Powell, all of UW-Madison's department of chemistry. The work was supported by a grant from the U.S. National Science Foundation and a provisional patent has been submitted through the Wisconsin Alumni Research Foundation.

Terry Devitt (608) 262-8282, trdevitt@wisc.edu

Terry Devitt | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>