Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High octane waste: New catalyst and reactor technologies combine for efficient waste to fuel production

24.11.2008
The successful commercial production of liquid fuels from waste by means of the Fischer-Tropsch (FT) reaction depends on the marriage of two key technologies: small scale FT microchannel reactors, and highly active metal-carbide-based FT catalysts.

With the acquisition of Velocys Inc., a designer and developer of microchannel process technology, catalyst developer Oxford Catalysts, has taken a big step towards bringing these two technologies together to make small scale FT microchannel reactors a viable option for the commercial production of diesel and jet fuels. Velocys now owns, or has licences to, the largest microchannel reactor patent portfolio in the world.

Microchannel reactors are the best candidates for producing liquid fuels from sources such as agricultural waste, municipal solid waste and associated/flare gas, as well as from stranded gas, and coal. This is because they offer a way to reduce the size and cost of the chemical processing hardware, while still enabling efficient and precise temperature control, leading to higher throughput and conversion. Like the microelectronics technology that revolutionised the computer industry, microchannel technology shrinks processing hardware, while at the same time improving its performance.

To maximise the benefits they offer, microchannel reactors require an FT catalyst with activities an order of magnitude higher than conventional catalysts. The latest FT catalyst developed by Oxford Catalysts fits this bill exactly, and is specifically optimised for Velocys’ microchannel reactor design.

The FT reaction has the potential to reduce the carbon footprint of transportation fuels produced from organic waste by up to 90% compared to fossil fuels. By combining the expertise of the two companies, Oxford Catalysts hopes to refine the processes required to make the commercial production of liquid fuels from a variety of waste sources an economic and environmentally friendly proposition.

Derek Atkinson, Business Development Director, Oxford Catalysts says:

"By working more closely together to optimise and intensify the FT process we will be able to make the production of liquid fuels from a wide variety of sources a more practical proposition. This will also help governments to achieve their carbon reduction commitments."

Jeff McDaniel, Business Development Director, Velocys says:

"By combining our two innovative technologies we believe that we are now in an outstanding position to move forward towards the goal of producing liquid fuels that are cleaner and have a lower carbon footprint."

Nina Morgan | alfa
Further information:
http://www.oxfordcatalysts.com
http://www.veolocys.com

More articles from Power and Electrical Engineering:

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

nachricht New nanofiber marks important step in next generation battery development
13.03.2017 | Georgia Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>