Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High octane waste: New catalyst and reactor technologies combine for efficient waste to fuel production

24.11.2008
The successful commercial production of liquid fuels from waste by means of the Fischer-Tropsch (FT) reaction depends on the marriage of two key technologies: small scale FT microchannel reactors, and highly active metal-carbide-based FT catalysts.

With the acquisition of Velocys Inc., a designer and developer of microchannel process technology, catalyst developer Oxford Catalysts, has taken a big step towards bringing these two technologies together to make small scale FT microchannel reactors a viable option for the commercial production of diesel and jet fuels. Velocys now owns, or has licences to, the largest microchannel reactor patent portfolio in the world.

Microchannel reactors are the best candidates for producing liquid fuels from sources such as agricultural waste, municipal solid waste and associated/flare gas, as well as from stranded gas, and coal. This is because they offer a way to reduce the size and cost of the chemical processing hardware, while still enabling efficient and precise temperature control, leading to higher throughput and conversion. Like the microelectronics technology that revolutionised the computer industry, microchannel technology shrinks processing hardware, while at the same time improving its performance.

To maximise the benefits they offer, microchannel reactors require an FT catalyst with activities an order of magnitude higher than conventional catalysts. The latest FT catalyst developed by Oxford Catalysts fits this bill exactly, and is specifically optimised for Velocys’ microchannel reactor design.

The FT reaction has the potential to reduce the carbon footprint of transportation fuels produced from organic waste by up to 90% compared to fossil fuels. By combining the expertise of the two companies, Oxford Catalysts hopes to refine the processes required to make the commercial production of liquid fuels from a variety of waste sources an economic and environmentally friendly proposition.

Derek Atkinson, Business Development Director, Oxford Catalysts says:

"By working more closely together to optimise and intensify the FT process we will be able to make the production of liquid fuels from a wide variety of sources a more practical proposition. This will also help governments to achieve their carbon reduction commitments."

Jeff McDaniel, Business Development Director, Velocys says:

"By combining our two innovative technologies we believe that we are now in an outstanding position to move forward towards the goal of producing liquid fuels that are cleaner and have a lower carbon footprint."

Nina Morgan | alfa
Further information:
http://www.oxfordcatalysts.com
http://www.veolocys.com

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>