Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvesting Vibrations To Power Microsensors

10.02.2014
Researchers from A*STAR IME conceptualized a novel strategy to efficiently harness low frequency vibrations as infinite power source for miniature electronic devices.

Battery replacement may soon be a thing of the past. Researchers from A*STAR’s Institute of Microelectronics (IME) are tapping into low frequency vibrations, the most abundant and ubiquitous energy source in the surroundings, to power small-scale electronic devices indefinitely.

IME’s energy harvester has the ability to continuously convert the vibrations – across a wide frequency range in different environments - into electricity. This breakthrough presents a green, economical and sustainable long-term solution to eliminate the manual re-charging or replacement of power sources in miniature devices.

2. To use low frequency vibrations efficiently, common attempts focus on expanding the size of the device in order to attain maximum power output, which limit the applications of these energy harvesters. In addition, most reported designs can only operate at one fixed frequency, which significantly reduces the power generation efficiency in practical environments.

3. To address these design challenges, IME researchers have demonstrated an aluminium nitride (AlN) based energy harvester with record-high power density of 1.5 x 10-3 W/cm3 capable of generating electricity equivalent to three commercial implantable batteries[1] over a 10-year period. As an inexorable power supply, the remarkable power density feature translates into massive savings as costs and logistics associated with power source servicing will no longer be relevant.

4. The energy harvester also extends the flexibility of low frequency vibrational sources that can be harvested by offering the widest sampling range of 10th – 100 Hz. The wide sampling range makes it now possible to more productively harness real-world vibrational sources in spite of their irregularity and randomness.

5. Dr Alex Gu, Technical Director of IME’s Sensors and Actuators Microsystems Programme, who conceptualized the energy harvester design, commented, “Our design strategy exploits the coupling effect between the Vortex shedding and Helmholtz resonating in order to enhance the Helmholtz resonating and lower the threshold input pressure. By transferring the low frequency input vibrational energy into a pressurised fluid, the fluid synchronizes the random input vibrations into pre-defined resonance frequencies, thus enabling the full utilization of vibrations from the complete low frequency spectrum.”

6. Professor Dim-Lee Kwong, Executive Director of IME, said, “This breakthrough presents tremendous opportunities to realise a practical, sustainable and efficient energy renewal model with attractive small-form factor, low cost solution for a wide range of applications from implantable medical devices, wireless communication and sensor networks, to other mobile electronics that enable future mobile society.”

Media Contact:

Dr. Shin-Miin SONG
Institute of Microelectronics, A*STAR
DID: (65) 6770-5317
Email: songsm@ime.a-star.edu.sg
About Institute of Microelectronics (IME)
The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, IME's mission is to add value to Singapore's semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge to the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics, and photonics. For more information about IME, please visit http://www.ime.a-star.edu.sg.

About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 18 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis, as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories.

[1] Comparison is calculated based on the energy generated from a 10-year usage of the energy harvester against that of a commercial implantable lithium battery with an energy density of 1.05 W.h/cm3 and volume of 2.34 cm3

Associated links
www.a-star.edu.sg/Media/News/Press-Releases/ID/2544/Harvesting-Vibrations-To-Power-Microsensors.aspx

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants
25.05.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Atomic precision: technologies for the next-but-one generation of microchips
24.05.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>