Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvesting trees at the push of a button

20.03.2013
EU project ROD-PICKER develops automated harvesting machine for energy wood

Fast-growing trees, which are becoming an increasingly important source of renewable energy, are planted on Short Rotation Coppices (SRCs). In order to fulfil the high demand for plant material, the parent tree nurseries must be efficiently harvested and the rods for cutting production sorted and packaged.


Year-old willows are harvested in a parent tree nursery. Picture: ROD-PICKER


The sorting of harvested rods is subject to set criteria and currently still performed by hand. The ROD-PICKER project targets a higher level of automation and greater economy. Picture: ROD-PICKER

This however currently involves manual work on a considerable scale. ROD-PICKER, an EU-funded project, is developing an automated harvesting and processing system for SRC parent nurseries which aims to multiply production efficiency.

Bremerhaven, March 2013. Short Rotation Coppices (SRCs), in which fast-growing types of tree such as willows or poplars are cultivated as a bio-energy source, are very efficient biomass production systems with many advantages for the environment. Biological diversity is raised and soil protection and stabilization of the regional climate are improved.

The ROD-PICKER project has the task of developing an automated harvesting and processing system for parent tree nurseries, which combines the harvesting, the sorting and packaging of the rods and thus makes the harvesting process more efficient. In order to satisfy the sector’s demand economically, cost-efficient harvesting techniques are urgently required here. At present, harvesting, sorting and packaging are however still performed by hand or by self-built prototypes through which demand, above all in the near future, cannot be satisfied.

The method to be developed within ROD-PICKER is expected to result in a harvesting speed which is ten times faster. The target is an automated system for European biomass farmers which will allow an extensive use of SRCs in Europe thanks to time and cost reductions. The prototype to be developed aims to unite all the processes which occur in the course of harvesting and at the same time to be compatible with existing processing and transport equipment.

Through the cost-efficient production of cuttings, wood production in the European biomass sector could be increased by 30 % per year, whilst production efficiency could be raised by at least 500 % in comparison to manual harvesting methods. An improved competitiveness amongst European farmers would preserve jobs in rural regions as well as generate new employment in the manufacture, maintenance and operation of the proposed system. Field trials with ROD-PICKER will commence in November 2013 in Dresden.

All the small and medium-sized enterprises participating in the project are operating in the area of manufacture of agricultural harvesting machines and auxiliary equipment, cultivation of energy crops or the biomass production chain. Coordinator of the ROD-PICKER project is Egedal Maskinfabrik A/S from Denmark. The other partners involved in the project are Salixenergi Europa AB from Sweden, Politehnica University of Timisoara from Romania and from Germany Lempe GbR., the Technical University of Dresden and ttz Bremerhaven, which is responsible for research and technological development including scientific coordination. The project is funded as “Research for the benefit of SMEs” within the 7th Framework Programme of the European Union. One of the main objectives of this programme is to strengthen the industrial competitiveness of European SMEs. The project is running from October 2012 to September 2014 and has a total budget of around € 1.700.000, of which about € 1.300.000 is EU funding.

ttz Bremerhaven is an independent research institute and performs application-related research and development. Under the umbrella of ttz Bremerhaven, an international team of experts is working in the fields of food, environment and health.

Contact:
Christian Colmer
Head of Communication and Media
ttz Bremerhaven
Fischkai 1
D-27572 Bremerhaven (Germany)
Phone: +49 (0)471 48 32 -124
Fax: +49 (0)471 48 32 - 129
ccolmer@ttz-bremerhaven.de

Christian Colmer | idw
Further information:
http://www.ttz-bremerhaven.de

More articles from Power and Electrical Engineering:

nachricht System draws power from daily temperature swings
16.02.2018 | Massachusetts Institute of Technology

nachricht Researchers at Kiel University develop extremely sensitive sensor system for magnetic fields
15.02.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>