Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvesting trees at the push of a button

20.03.2013
EU project ROD-PICKER develops automated harvesting machine for energy wood

Fast-growing trees, which are becoming an increasingly important source of renewable energy, are planted on Short Rotation Coppices (SRCs). In order to fulfil the high demand for plant material, the parent tree nurseries must be efficiently harvested and the rods for cutting production sorted and packaged.


Year-old willows are harvested in a parent tree nursery. Picture: ROD-PICKER


The sorting of harvested rods is subject to set criteria and currently still performed by hand. The ROD-PICKER project targets a higher level of automation and greater economy. Picture: ROD-PICKER

This however currently involves manual work on a considerable scale. ROD-PICKER, an EU-funded project, is developing an automated harvesting and processing system for SRC parent nurseries which aims to multiply production efficiency.

Bremerhaven, March 2013. Short Rotation Coppices (SRCs), in which fast-growing types of tree such as willows or poplars are cultivated as a bio-energy source, are very efficient biomass production systems with many advantages for the environment. Biological diversity is raised and soil protection and stabilization of the regional climate are improved.

The ROD-PICKER project has the task of developing an automated harvesting and processing system for parent tree nurseries, which combines the harvesting, the sorting and packaging of the rods and thus makes the harvesting process more efficient. In order to satisfy the sector’s demand economically, cost-efficient harvesting techniques are urgently required here. At present, harvesting, sorting and packaging are however still performed by hand or by self-built prototypes through which demand, above all in the near future, cannot be satisfied.

The method to be developed within ROD-PICKER is expected to result in a harvesting speed which is ten times faster. The target is an automated system for European biomass farmers which will allow an extensive use of SRCs in Europe thanks to time and cost reductions. The prototype to be developed aims to unite all the processes which occur in the course of harvesting and at the same time to be compatible with existing processing and transport equipment.

Through the cost-efficient production of cuttings, wood production in the European biomass sector could be increased by 30 % per year, whilst production efficiency could be raised by at least 500 % in comparison to manual harvesting methods. An improved competitiveness amongst European farmers would preserve jobs in rural regions as well as generate new employment in the manufacture, maintenance and operation of the proposed system. Field trials with ROD-PICKER will commence in November 2013 in Dresden.

All the small and medium-sized enterprises participating in the project are operating in the area of manufacture of agricultural harvesting machines and auxiliary equipment, cultivation of energy crops or the biomass production chain. Coordinator of the ROD-PICKER project is Egedal Maskinfabrik A/S from Denmark. The other partners involved in the project are Salixenergi Europa AB from Sweden, Politehnica University of Timisoara from Romania and from Germany Lempe GbR., the Technical University of Dresden and ttz Bremerhaven, which is responsible for research and technological development including scientific coordination. The project is funded as “Research for the benefit of SMEs” within the 7th Framework Programme of the European Union. One of the main objectives of this programme is to strengthen the industrial competitiveness of European SMEs. The project is running from October 2012 to September 2014 and has a total budget of around € 1.700.000, of which about € 1.300.000 is EU funding.

ttz Bremerhaven is an independent research institute and performs application-related research and development. Under the umbrella of ttz Bremerhaven, an international team of experts is working in the fields of food, environment and health.

Contact:
Christian Colmer
Head of Communication and Media
ttz Bremerhaven
Fischkai 1
D-27572 Bremerhaven (Germany)
Phone: +49 (0)471 48 32 -124
Fax: +49 (0)471 48 32 - 129
ccolmer@ttz-bremerhaven.de

Christian Colmer | idw
Further information:
http://www.ttz-bremerhaven.de

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>