Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Harvesting trees at the push of a button

EU project ROD-PICKER develops automated harvesting machine for energy wood

Fast-growing trees, which are becoming an increasingly important source of renewable energy, are planted on Short Rotation Coppices (SRCs). In order to fulfil the high demand for plant material, the parent tree nurseries must be efficiently harvested and the rods for cutting production sorted and packaged.

Year-old willows are harvested in a parent tree nursery. Picture: ROD-PICKER

The sorting of harvested rods is subject to set criteria and currently still performed by hand. The ROD-PICKER project targets a higher level of automation and greater economy. Picture: ROD-PICKER

This however currently involves manual work on a considerable scale. ROD-PICKER, an EU-funded project, is developing an automated harvesting and processing system for SRC parent nurseries which aims to multiply production efficiency.

Bremerhaven, March 2013. Short Rotation Coppices (SRCs), in which fast-growing types of tree such as willows or poplars are cultivated as a bio-energy source, are very efficient biomass production systems with many advantages for the environment. Biological diversity is raised and soil protection and stabilization of the regional climate are improved.

The ROD-PICKER project has the task of developing an automated harvesting and processing system for parent tree nurseries, which combines the harvesting, the sorting and packaging of the rods and thus makes the harvesting process more efficient. In order to satisfy the sector’s demand economically, cost-efficient harvesting techniques are urgently required here. At present, harvesting, sorting and packaging are however still performed by hand or by self-built prototypes through which demand, above all in the near future, cannot be satisfied.

The method to be developed within ROD-PICKER is expected to result in a harvesting speed which is ten times faster. The target is an automated system for European biomass farmers which will allow an extensive use of SRCs in Europe thanks to time and cost reductions. The prototype to be developed aims to unite all the processes which occur in the course of harvesting and at the same time to be compatible with existing processing and transport equipment.

Through the cost-efficient production of cuttings, wood production in the European biomass sector could be increased by 30 % per year, whilst production efficiency could be raised by at least 500 % in comparison to manual harvesting methods. An improved competitiveness amongst European farmers would preserve jobs in rural regions as well as generate new employment in the manufacture, maintenance and operation of the proposed system. Field trials with ROD-PICKER will commence in November 2013 in Dresden.

All the small and medium-sized enterprises participating in the project are operating in the area of manufacture of agricultural harvesting machines and auxiliary equipment, cultivation of energy crops or the biomass production chain. Coordinator of the ROD-PICKER project is Egedal Maskinfabrik A/S from Denmark. The other partners involved in the project are Salixenergi Europa AB from Sweden, Politehnica University of Timisoara from Romania and from Germany Lempe GbR., the Technical University of Dresden and ttz Bremerhaven, which is responsible for research and technological development including scientific coordination. The project is funded as “Research for the benefit of SMEs” within the 7th Framework Programme of the European Union. One of the main objectives of this programme is to strengthen the industrial competitiveness of European SMEs. The project is running from October 2012 to September 2014 and has a total budget of around € 1.700.000, of which about € 1.300.000 is EU funding.

ttz Bremerhaven is an independent research institute and performs application-related research and development. Under the umbrella of ttz Bremerhaven, an international team of experts is working in the fields of food, environment and health.

Christian Colmer
Head of Communication and Media
ttz Bremerhaven
Fischkai 1
D-27572 Bremerhaven (Germany)
Phone: +49 (0)471 48 32 -124
Fax: +49 (0)471 48 32 - 129

Christian Colmer | idw
Further information:

More articles from Power and Electrical Engineering:

nachricht New method increases energy density in lithium batteries
24.10.2016 | Columbia University School of Engineering and Applied Science

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>