Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harnessing the Power of Plants: University Team Studies Sorghum Genetics to Fuel Green Energy Research

22.08.2011
Those choices at the pump may look a little greener in the future as a Kansas State University research team is conducting a study that could eventually add "plant" to the list of fuel options.

In early August, four faculty members from Kansas State University's College of Agriculture and College of Engineering received an $800,000 grant from the U.S. departments of Agriculture and Energy under the Plant Feedstocks Genomics for Bioenergy research program. The grant funds a three-year study that will provide the genetic groundwork necessary for potentially turning sorghum into biofuel by increasing the plant's biomass yield.

"Bioenergy is a very hot topic and there's a lot of talk about its possibilities," said Jianming Yu, associate professor of agronomy and leader of the study. "But a lot of work still needs to be done since it's still a new field. And unless genetics is improved, industries probably won't want to get involved because there are still too many unknowns."

Yu is conducting the sorghum bioenergy study with the university's Tesfaye Tesso, assistant professor of agronomy; Scott Staggenborg, professor of agronomy; and Donghai Wang, professor of biological and agricultural engineering, along with researchers from the University of Minnesota and the USDA's Agricultural Research Service plant genetic resources conservation unit. Kansas State University is one of nine universities chosen nationally to participate in genomics studies related to bioenergy. Potential benefits from these university studies range from decreasing oil imports to optimizing crops that can tolerate drought, poor soil and other unfavorable conditions.

Over the next three years the Kansas State University team will build a genetic database on biomass sorghum, a type of sorghum that contains little grain and is mostly leaves and stalk. Biomass sorghum provides a large amount of high-quality feedstock, which can produce eco-friendly fuels. Kansas is the top producer of sorghum in the U.S., accounting for nearly half of the country's annual yield. Similarly, the U.S. is the world's largest grain sorghum exporter and ranks second in production, according to Staggenborg.

But despite the country's large production of sorghum, little data about biomass sorghum's genetics and how to improve the crop exists, outside of some USDA studies on the sorghum collection conducted many years ago. While many grain crops have had their genetics and production refined and documented for decades, the university sorghum team essentially has to start from scratch.

"Our study will sort of be a prototype with new lessons and insights into how we combine this proven method of plant breeding -- changing a plant's genetics to make more starch, more yield, or in this case, more biomass -- with this new genomic technology to optimize the improvement process," Tesso said. "In the bigger picture, this study addresses some of those emerging issues with energy and climate change."

To build the database, the team is looking at genetic diversity in sorghum's germplasm -- essentially the plant's gene bank. Members will start with 1,000 sorghum lines selected from the center of the germplasm pool. A line is the unique genetic material in sorghum. Those samples will then be genotyped, a process where the team looks at each sample's unique molecular diversity and compares it to the molecular diversity found in the sampled collection as a whole.

From those 1,000 samples, a subset of 300 samples will be chosen to represent the maximum amount of diversity, and will be studied more in depth for biomass yield and biomass composition. Once the biomass yield is found for those 300 samples, Yu and the others can then predict the biomass yield of the remaining 700 untested samples from that original 1,000 sample set.

Additionally, some field samples will chemically analyzed. Data from this analysis will be used with near-infrared spectroscopy technology to build predictive models. The researchers can use these models to accurately predict the biomass composition in the other samples rather than using the costly chemical analysis process. Wang, whose expertise is in biological and agricultural engineering, will oversee this phase.

"This process is part of what we call 21st-century predictive biology," Yu said. "We'll have a total of 3,600 field samples collected for this two-year, dual replication study from three locations in Kansas. The third and final year will be dedicated to validation. Basically we'll have a ton of samples to work with, and this predictive process will help us manage the data and workload."

Yu said the group is prepped for this new genetic challenge through their previous research projects, which have been supported by Kansas State University's Targeted Excellence Program, Kansas Grain Sorghum Commission, National Sorghum Checkoff Program and the Great Plains Sorghum Improvement and Utilization Center.

"There's that adage that says you can't just build a better car by making a bigger engine. You also need a solid frame to support it," Yu said. "For this biomass sorghum car, we don't have the upgrades yet that are necessary to really think about the engine, so we need to build and improve that framework. It's pretty exciting that a single project like this can bring together such an interdisciplinary team for a singular focus."

Jianming Yu, 785-532-6094, jyu@k-state.edu

Jianming Yu | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>