Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Off-grid sterilization with Rice U.’s ‘solar steam’

23.07.2013
Solar-powered sterilization technology supported by Gates Foundation

Rice University nanotechnology researchers have unveiled a solar-powered sterilization system that could be a boon for more than 2.5 billion people who lack adequate sanitation. The “solar steam” sterilization system uses nanomaterials to convert as much as 80 percent of the energy in sunlight into germ-killing heat.

The technology is described online in a July 8 paper in the Proceedings of the National Academy of Sciences Early Edition. In the paper, researchers from Rice’s Laboratory for Nanophotonics (LANP) show two ways that solar steam can be used for sterilization — one setup to clean medical instruments and another to sanitize human waste.

“Sanitation and sterilization are enormous obstacles without reliable electricity,” said Rice photonics pioneer Naomi Halas, the director of LANP and lead researcher on the project, with senior co-author and Rice professor Peter Nordlander. “Solar steam’s efficiency at converting sunlight directly into steam opens up new possibilities for off-grid sterilization that simply aren’t available today.”

In a previous study last year, Halas and colleagues showed that “solar steam” was so effective at direct conversion of solar energy into heat that it could even produce steam from ice water.

“It makes steam directly from sunlight,” she said. “That means the steam forms immediately, even before the water boils.”

Halas, Rice’s Stanley C. Moore Professor in Electrical and Computer Engineering, professor of physics, professor of chemistry and professor of biomedical engineering, is one of the world’s most-cited chemists. Her lab specializes in creating and studying light-activated particles. One of her creations, gold nanoshells, is the subject of several clinical trials for cancer treatment.

Solar steam’s efficiency comes from light-harvesting nanoparticles that were created at LANP by Rice graduate student Oara Neumann, the lead author on the PNAS study. Neumann created a version of nanoshells that converts a broad spectrum of sunlight — including both visible and invisible bandwidths — directly into heat. When submerged in water and exposed to sunlight, the particles heat up so quickly they instantly vaporize water and create steam. The technology has an overall energy efficiency of 24 percent. Photovoltaic solar panels, by comparison, typically have an overall energy efficiency of around 15 percent.

When used in the autoclaves in the tests, the heat and pressure created by the steam were sufficient to kill not just living microbes but also spores and viruses. The solar steam autoclave was designed by Rice undergraduates at Rice’s Oshman Engineering Design Kitchen and refined by Neumann and colleagues at LANP. In the PNAS study, standard tests for sterilization showed the solar steam autoclave could kill even the most heat-resistant microbes.

“The process is very efficient,” Neumann said. “For the Bill & Melinda Gates Foundation program that is sponsoring us, we needed to create a system that could handle the waste of a family of four with just two treatments per week, and the autoclave setup we reported in this paper can do that.”

Halas said her team hopes to work with waste-treatment pioneer Sanivation to conduct the first field tests of the solar steam waste sterilizer at three sites in Kenya.

“Sanitation technology isn’t glamorous, but it’s a matter of life and death for 2.5 billion people,” Halas said. “For this to really work, you need a technology that can be completely off-grid, that’s not that large, that functions relatively quickly, is easy to handle and doesn’t have dangerous components. Our Solar Steam system has all of that, and it’s the only technology we’ve seen that can completely sterilize waste. I can’t wait to see how it performs in the field.”

Paper co-authors include Curtis Feronti, Albert Neumann, Anjie Dong, Kevin Schell, Benjamin Lu, Eric Kim, Mary Quinn, Shea Thompson, Nathaniel Grady, Maria Oden and Nordlander, all of Rice. The research was supported by a Grand Challenges grant from the Bill & Melinda Gates Foundation and by the Welch Foundation.

VIDEO is available at:
http://www.youtube.com/watch?v=J2DbVQ6AnDs
The following IMAGE is available at:
http://news.rice.edu/wp-content/uploads/2012/11/SOLAR-1-WEB.jpg
Rice University graduate student Oara Neumann, left, and scientist Naomi Halas are co-authors of a new study about a highly efficient method of turning sunlight into heat. They expect their technology to have an initial impact as an ultra-small-scale system to treat human waste in developing nations without sewer systems or electricity. (Credit: Jeff Fitlow/Rice University)

A copy of the PNAS paper is available at:

http://www.pnas.org/content/110/29/11677

Follow Rice News and Media Relations via Twitter @RiceUNews

David Ruth | EurekAlert!
Further information:
http://www.rice.edu
http://news.rice.edu/2013/07/22/off-grid-sterilization-with-rice-u-s-solar-steam/

More articles from Power and Electrical Engineering:

nachricht Electrical fields drive nano-machines a 100,000 times faster than previous methods
19.01.2018 | Technische Universität München

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>