Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene Nanocomposite a Bridge to Better Batteries

28.07.2011
Berkeley Lab researchers create graphene nanocomposite for high energy storage

Researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have created a graphene and tin nanoscale composite material for high-capacity energy storage in renewable lithium ion batteries. By encapsulating tin between sheets of graphene, the researchers constructed a new, lightweight “sandwich” structure that should bolster battery performance.

“For an electric vehicle, you need a lightweight battery that can be charged quickly and holds its charge capacity after repeated cycling,” says Yuegang Zhang, a staff scientist with Berkeley Lab’s Molecular Foundry, in the Inorganic Nanostructures Facility, who led this research. “Here, we’ve shown the rational design of a nanoscale architecture, which doesn’t need an additive or binder to operate, to improve battery performance.”

Graphene is a single-atom-thick, “chicken-wire” lattice of carbon atoms with stellar electronic and mechanical properties, far beyond silicon and other traditional semiconductor materials. Previous work on graphene by Zhang and his colleagues has emphasized electronic device applications.

In this study, the team assembled alternating layers of graphene and tin to create a nanoscale composite. To create the composite material, a thin film of tin is deposited onto graphene. Next, another sheet of graphene is transferred on top of the tin film. This process is repeated to create a composite material, which is then heated to 300˚ Celsius (572˚ Fahrenheit) in a hydrogen and argon environment. During this heat treatment, the tin film transforms into a series of pillars, increasing the height of the tin layer.

“The formation of these tin nanopillars from a thin film is very particular to this system, and we find the distance between the top and bottom graphene layers also changes to accommodate the height change of the tin layer,” says Liwen Ji, a post-doctoral researcher at the Foundry. Ji is the lead author and Zhang the corresponding author of a paper reporting the research in the journal Energy and Environmental Science.

The change in height between the graphene layers in these new nanocomposites helps during electrochemical cycling of the battery, as the volume change of tin improves the electrode’s performance. In addition, this accommodating behavior means the battery can be charged quickly and repeatedly without degrading — crucial for rechargeable batteries in electric vehicles.

“We have a large battery program here at Berkeley Lab, where we are capable of making highly cyclable cells. Through our interactions in the Carbon Cycle 2.0 program, the Materials Science Division researchers benefit from quality battery facilities and personnel, along with our insights in what it takes to make a better electrode,” says co-author Battaglia, program manager in the Advanced Energy Technology department of Berkeley Lab’s Environmental and Energy Technologies Division. “In return, we have an outlet for getting these requirements out to scientists developing the next generation of materials.”

Molecular Foundry staff scientist Yuegang Zhang, Energy and Environmental Technologies Division program manager Vincent Battaglia, and their colleagues have created a graphene-based nanocomposite for high capacity energy storage in renewable lithium ion batteries.

“Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage,” by Liwen Ji, Zhongkui Tan, Tevye Kuykendall, Eun Ji An, Yanbao Fu, Vincent Battaglia, and Yuegang Zhang, appears in Energy and Environmental Science and is available online at http://pubs.rsc.org/en/Content/ArticleLanding/2011/EE/C1EE01592C. Portions of this work at the Molecular Foundry were supported by DOE’s Office of Science.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

Additional Information

The Molecular Foundry is one of the five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit http://science.energy.gov. For more information about the Molecular Foundry visit http://foundry.lbl.gov/.

Information on Zhang’s previous work with graphene for nanoscale electronic devices may be found at (http://newscenter.lbl.gov/news-releases/2010/08/06/noise-in-graphene/) and (http://newscenter.lbl.gov/feature-stories/2010/10/15/the-noise-about-graphene/).

Aditi Risbud | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>