Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Got Power?


Resilient electric grid feasibility study kicks off in Chicago

Imagine a massive storm cell hits a major city in the United States, taking out a power substation leaving 20,000 people without electricity. Even with 24-hour support, it takes days before everyone’s power returns. That’s the reality today.

Capable of carrying ten times as much power as same-size copper wires, the inherently fault current limiting, high temperature superconductor cable automatically adapts to power surges and disruptions and resets when conditions return to normal.

But what if there was a way to prevent that power outage? The Department of Homeland Security Science and Technology Directorate (S&T) has partnered with Massachusetts-based Company, AMSC, to develop a new superconductor cable – part of a Resilient Electric Grid (REG) program – that may enable urban utilities to “keep the lights on” during severe events.

During a six-month feasibility study, S&T, worked with AMSC and Chicago electric utility company, Commonwealth Edison (ComEd) to determine the commercial-scale application of the superconductor cable.

Currently, many urban-area electrical substations aren’t connected to each other because of the amount of copper cables that would be required to move massive amounts of power as well as the risk of damaging equipment.

With the existing infrastructure, if one substation loses power, all electricity in that area is lost until the substation comes back up. The primary goal of S&T’s superconductor-based Resilient Electric Grid (REG) program has been to develop and demonstrate advanced technologies to increase the reliability, flexibility and resilience of the nation’s utility grid.

Using AMSC’s inherently fault current limiting, high temperature superconductor (IFCL-HTS) technology, utility companies are able to connect several substations together to mitigate or prevent disruptions. By allowing stations to share excess capacity during emergencies and reroute power as needed and share assets you reduce the likelihood of power outages for customers, explained REG Program Manager Sarah Mahmood.

Capable of carrying ten times as much power as same-size copper wires, the IFCL-HTS cable automatically adapts to power surges and disruptions and resets when conditions return to normal. A single IFCL-HTS cable can replace 12 copper cable bundles, freeing up underground space for other utility needs. This innovative solution combines two technologies, and as a result provides a new capability for resiliency by enabling multiple paths for power flow.

“I am very excited about this,” said Mahmood. “This is a potential game changer. This technology will inherently increase the resiliency, robustness and reliability of the grid.”

S&T’s REG program has three phases. During Phase One, the technology was successfully tested and demonstrated at the Oak Ridge National Laboratory in Tennessee. The fault-current-limiting capabilities of the cable were proven and the cable was qualified for installation into the nation’s electric grid.

Phase Two, in progress now, involves installing an IFCL-HTS cable in the New York City electric grid to connect two substations together in a pilot demonstration. According to Mahmood, the cable installation will be complete in 2015 and will remain operational for one year to allow S&T to assess its usability. The information gathered here will help determine how to integrate the REG into the utility sector and will inform the third phase.

In phase three, also in progress now, S&T will work with Chicago electric utility company, Commonwealth Edison (ComEd) and AMSC, to develop a detailed deployment plan for a permanent, operational installation of the technology in Chicago’s central business district. The three organizations will identify and determine solutions to any technical challenges involved with a large commercial level installation of the REG, develop a true scope, cost, and determine system risks and how to mitigate them. While this will be focused primarily on Chicago, S&T and AMSC will more broadly assess integrating the technology across the nation.

“We’re studying the different sites where we want the cable to go so we can get a handle on the engineering requirements,” said Mahmood. “After six months, we’ll have an internal review board with key subject matter experts from different agencies to review the data. Once all parties are on board and financially committed, we will move forward with the project. Should all parties agree to proceed, this commercial-scale effort could dramatically reduce the cost of the cable to the point where it would become a financially feasible technology for all utilities to consider.”

Contact Information

Amanda Glenn
Office of Corporate Communications
Phone: 202-254-5691
Mobile: 202-384-3293

Amanda Glenn | newswise

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>