Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global solar photovoltaic industry is likely now a net energy producer

09.04.2013
The rapid growth of the solar power industry over the past decade may have exacerbated the global warming situation it was meant to soothe, simply because most of the energy used to manufacture the millions of solar panels came from burning fossil fuels. That irony, according to Stanford University researchers, is coming to an end.

For the first time since the boom started, the electricity generated by all of the world's installed solar photovoltaic (PV) panels last year probably surpassed the amount of energy going into fabricating more modules, according to Michael Dale, a postdoctoral fellow at Stanford's Global Climate & Energy Project (GCEP). With continued technological advances, the global PV industry is poised to pay off its debt of energy as early as 2015, and no later than 2020.


Brian Webster (left) and Mario Richard install photovoltaic (PV) modules on an Englewood, Colo., home. Manufacturing and installing solar panels require large amounts of electricity. But Stanford scientists have found that the global PV industry likely produces more electricity than it consumes.

Credit: Dennis Schroeder/NREL

"This analysis shows that the industry is making positive strides," said Dale, who developed a novel way of assessing the industry's progress globally in a study published in the current edition of Environmental Science & Technology. "Despite its fantastically fast growth rate, PV is producing – or just about to start producing – a net energy benefit to society."

The achievement is largely due to steadily declining energy inputs required to manufacture and install PV systems, according to co-author Sally Benson, GCEP's director. The new study, Benson said, indicates that the amount of energy going into the industry should continue to decline, while the issue remains an important focus of research.

"GCEP is focused on developing game-changing energy technologies that can be deployed broadly. If we can continue to drive down the energy inputs, we will derive greater benefits from PV," she said. "Developing new technologies with lower energy requirements will allow us to grow the industry at a faster rate."

The energy used to produce solar panels is intense. The initial step in producing the silicon at the heart of most panels is to melt silica rock at 3,000 degrees Fahrenheit using electricity, commonly from coal-fired power plants.

As investment and technological development have risen sharply with the number of installed panels, the energetic costs of new PV modules have declined. Thinner silicon wafers are now used to make solar cells, less highly refined materials are now used as the silicon feedstock, and less of the costly material is lost in the manufacturing process. Increasingly, the efficiency of solar cells using thin film technologies that rely on earth-abundant materials such as copper, zinc, tin and carbon have the potential for even greater improvements.

To be considered a success – or simply a positive energy technology – PV panels must ultimately pay back all the energy that went into them, said Dale. The PV industry ran an energy deficit from 2000 to now, consuming 75 percent more energy than it produced just five years ago. The researchers expect this energy debt to be paid off as early as 2015, thanks to declining energy inputs, more durable panels and more efficient conversion of sunlight into electricity.

Strategic implications

If current rapid growth rates persist, by 2020 about 10 percent of the world's electricity could be produced by PV systems. At today's energy payback rate, producing and installing the new PV modules would consume around 9 percent of global electricity. However, if the energy intensity of PV systems continues to drop at its current learning rate, then by 2020 less than 2 percent of global electricity will be needed to sustain growth of the industry.

This may not happen if special attention is not given to reducing energy inputs. The PV industry's energetic costs can differ significantly from its financial costs. For example, installation and the components outside the solar cells, like wiring and inverters, as well as soft costs like permitting, account for a third of the financial cost of a system, but only 13 percent of the energy inputs. The industry is focused primarily on reducing financial costs.

Continued reduction of the energetic costs of producing PV panels can be accomplished in a variety of ways, such as using less materials or switching to producing panels that have much lower energy costs than technologies based on silicon. The study's data covers the various silicon-based technologies as well as newer ones using cadmium telluride and copper indium gallium diselenide as semiconductors. Together, these types of PV panels account for 99 percent of installed panels.

The energy payback time can also be reduced by installing PV panels in locations with high quality solar resources, like the desert Southwest in the United States and the Middle East. "At the moment, Germany makes up about 40 percent of the installed market, but sunshine in Germany isn't that great," Dale said. "So from a system perspective, it may be better to deploy PV systems where there is more sunshine."

This accounting of energetic costs and benefits, say the researchers, should be applied to any new energy-producing technology, as well as to energy conservation strategies that have large upfront energetic costs, such as retrofitting buildings. GCEP researchers have begun applying the analysis to energy storage and wind power.

This article was written by Mark Golden, Precourt Energy Efficiency Center at Stanford University.

Related Information:
Stanford on YouTube
http://youtu.be/t1tuzvT1hck
Environmental Science & Technology
http://pubs.acs.org/doi/abs/10.1021/es3038824
Global Climate and Energy Project
http://gcep.stanford.edu/

Mark Golden | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>