Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Alliance of Solar Energy Research Institutes

13.07.2012
World leading solar research institutes sign agreement
Three leading solar research institutes: the U.S. Department of Energy’s National Renewable Energy Laboratory, NREL (USA), Fraunhofer Institute for Solar Energy Systems ISE (Germany) and the National Institute of Advanced Industrial Science and Technology AIST (Japan) yesterday signed a Memorandum of Understanding to form the Global Alliance of Solar Energy Research Institutes GA-SERI.

The signing ceremony was part of the opening session of the fifth Intersolar North America in San Francisco, a leading trade show and conference for the solar industry in North America and co-located with SEMICON West, the leading semiconductor industry exhibition.

In the Global Alliance of Solar Energy Research Institutes, regular scientific exchanges between the three institutions will be the basis for close cooperation. It is intended to have two scientists from each institute in residence at each of the other research centers.

The forming of this Alliance is a response to the rapidly growing relevance of solar energy harvesting thermally or with photovoltaics at rapidly decreasing costs. These technologies will form a key pillar of the future energy system which will be sustainable and carbon-free. The newly founded alliance will give the research in this important field a global voice.

About NREL (National Renewable Energy Laboratory)
NREL is a national laboratory managed and operated by the Alliance for Sustainable Energy, LLC for the United States Department of Energy. Integral to its mission for the U.S. Department of Energy, NREL conducts research and development in renewable energy and energy efficiency technologies and practices, advances related science and engineering, and transfers knowledge and innovation to address the United States’ energy and environmental goals. NREL is supported by funding from the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). Within the PV programs, researchers support the development of new designs and manufacturing processes for solar materials, components, and systems with an emphasis on improved performance, reliability and service life. Long-term research and development is an essential element for cost reduction, improved reliability, and improved performance of technologies currently supported by the Solar Energy Technologies Program at DOE. NREL's long-term R&D activities include the development of advanced materials and designs for new generation solar PV devices. Collaborative activities among the world’s foremost players in the field of solar energy research from Germany, Japan, and the US will lead to a significant acceleration of progress in these fields.

About Fraunhofer ISE
The Fraunhofer Institute for Solar Energy Systems is a part of the Fraunhofer-Gesellschaft, the leading organization for applied research in Europe. With a total staff of more than 1100, including students, Fraunhofer ISE is the largest solar energy research institute in Europe. Fraunhofer ISE is member of and plays a leading role within the Fraunhofer Energy Alliance which brings together the expertise in energy research of several Fraunhofer institutes; furthermore it is closely connected with the Fraunhofer Center for Sustainable Energy Systems (CSE) of Fraunhofer's subsidiary, Fraunhofer USA Inc., located in Cambridge, Massachusetts, USA. Fraunhofer ISE conducts research on the technology needed to supply energy efficiently and on an environmentally sound basis in industrialized, threshold and developing countries. To this purpose, the Institute develops systems, components, materials and processes in the areas of the thermal use of solar energy, solar building, solar cells, electrical power supplies, chemical energy conversion, energy storage and the rational use of energy. More than 90 % of the operating funds of Fraunhofer ISE of about 60 million euro are based on competitive contracts provided by industry, governmental bodies and the European Commission. About 50% come from industrial contracts alone.

About AIST/RCPVT (Research Center for Photovoltaic Technologies (RCPVT)
RCPVT is a research unit of the National Institute of Advanced Industrial Science and Technology (AIST). It is focused on the dynamic development of photovoltaic technologies to realize national energy security, a low carbon society, and sustainable economic growth and job creation through a comprehensive and systematic approach. To this end, AIST/RCPVT conducts research on a variety of photovoltaic materials and devices, such as Si, compound semiconductors, organic materials and novel concept materials. It develops calibration, measurement and system technologies together with industries, universities, research institutes and certification bodies. AIST/RCPVT consists of about 200 researchers including permanent staff, temporary staff and visiting staff from industry and academia.

Karin Schneider | Fraunhofer-Institut
Further information:
http://www.ise.fraunhofer.de/en

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>