Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Magnetic Effects Induced in Hybrid Materials

24.04.2015

Magnetic property changes by several hundred percent over a narrow temperature range.

The Science


Image courtesy of Ivan Schuller, University of California, San Diego

The magnetic coercivity, the resistance to change in the orientation of the magnetic domain structure, for nickel (Ni) was shown to strongly depend on the crystal structure of the underlying oxide (vanadium oxide). The maximum Ni coercivity occurs at the peak of the oxide’s metal insulator transition.

Proximity effects in hybrid heterostructures, which contain distinct layers of different materials, allow one material species to reveal and/or control properties of a dissimilar species. Specifically, for a magnetic thin film deposited onto a transition metal oxide film, the magnetic properties change dramatically as the oxide undergoes a structural phase transition.

The Impact

The hybrid between a simple magnetic material and a transition-metal oxide provides a “window” to understand the metal-to-insulator transition and offers dramatic tunability of magnetic properties. Potential applications are envisioned in the fields of information storage and power transmission.

Summary

Novel effects are increasingly being discovered when dissimilar materials are in contact (“hybrids”), often resulting in altogether new phenomena, materials with useful functionalities, or the ability to sense or control important material properties.

The focus of this investigation is a hybrid material consisting of a thin nickel film on a vanadium oxide substrate; this hybrid material exhibits magnetic properties unlike any other magnetic material. In this case, the magnetic coercivity (defined as the resistance to a change in the direction of the magnetic fields for a ferromagnetic material) of the nickel reveals insights concerning the transition of the vanadium oxide from being an electrical conductor to becoming an insulator, called the metal-insulator transition (MIT). In turn, the MIT can be used to control the coercivity of the nickel.

The vanadium oxide MIT is coincidental with a structural change at a well-defined “transition” temperature. At the thermal midpoint of the transition, crystallites of both phases coexist in equal portions, resulting in maximal structural entropy. The resulting inhomogeneity of the oxide structure causes stresses in the nickel (or other magnetic) film deposited on top. This provides a strong link between the nickel coercivity and the disorder in the oxide.

The coercivity is low when the oxide is structurally uniform (above and below the MIT) and high when it is maximally disordered in the middle of the transition. The magnetic properties of nickel therefore provide a window into the MIT process.

In turn, the MIT allows dramatic nonmagnetic control of the coercivity, which changes by several hundred percent within a narrow 10 K temperature range, unlike any other known magnetic material. Potential applications have been envisioned in two important, disparate energy related fields: energy driven magnetic recording and self-healing current fault limiters.

Funding

DOE Office of Science, Basic Energy Sciences (magnetism aspects) and the Air Force Office of Scientific Research (oxide-related research).

Publication

J. de la Venta, S. Wang, T. Saerbeck, J.G. Ramirez, I. Valmianski, I.K. Schuller, “Coercivity enhancement in V2O3/Ni bilayers driven by nanoscale phase coexistence.” Applied Physics Letters 104, 062410 (2014). [DOI: 10.1063/1.4865587]

Contact Information
Kristin Manke
kristin.manke@science.doe.gov

Kristin Manke | newswise
Further information:
http://www.science.doe.gov

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>