Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Generating energy from ocean waters off Hawaii

04.08.2010
Researchers at the University of Hawaii at Manoa say that the Leeward side of Hawaiian Islands may be ideal for future ocean-based renewable energy plants that would use seawater from the oceans' depths to drive massive heat engines and produce steady amounts of renewable energy.

The technology, referred to as Ocean Thermal Energy Conversion (OTEC), is described in the Journal of Renewable and Sustainable Energy, which is published by the American Institute of Physics (AIP).

It involves placing a heat engine between warm water collected at the ocean's surface and cold water pumped from the deep ocean. Like a ball rolling downhill, heat flows from the warm reservoir to the cool one. The greater the temperature difference, the stronger the flow of heat that can be used to do useful work such as spinning a turbine and generating electricity.

The history of OTEC dates back more than a half century. However, the technology has never taken off -- largely because of the relatively low cost of oil and other fossil fuels. But if there are any places on Earth where large OTEC facilities would be most cost competitive, it is where the ocean temperature differentials are the greatest.

Analyzing data from the National Oceanic and Atmospheric Administration's National Oceanographic Data Center, the University of Hawaii's Gérard Nihous says that the warm-cold temperature differential is about one degree Celsius greater on the leeward (western) side of the Hawaiian Islands than that on the windward (eastern) side.

This small difference translates to 15 percent more power for an OTEC plant, says Nihous, whose theoretical work focuses on driving down cost and increasing efficiency of future facilities, the biggest hurdles to bringing the technology to the mainstream.

"Testing that was done in the 1980s clearly demonstrates the feasibility of this technology," he says. "Now it's just a matter of paying for it."

More information in the project, see: http://hinmrec.hnei.hawaii.edu/ongoing-projects/otec-thermal-resource/

The article, "Mapping available Ocean Thermal Energy Conversion resources around the main Hawaiian Islands with state-of-the-art tools" by Gérard C. Nihous will appear in the Journal of Renewable and Sustainable Energy. See: http://jrse.aip.org/jrsebh/v2/i4/p043104_s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

Nihous' research is supported by the University of Hawaii's National Marine Renewable Energy Center, which is funded by the U.S. Department of Energy. See: http://hinmrec.hnei.hawaii.edu/

NOTE: Images are available for journalists. Please contact jbardi@aip.org

Image Caption #1: Average ocean temperature differences (at water depths of between 20 meters and 1000 meters depths) around the main Hawaiian Islands for the period July 1, 2007 through June 30, 2009 (the color palette is from 18°C to 24°C); the relatively more favorable area in the lee of the islands is clearly visible.

Image #1 Source/Credit: Data from HYCOM (an academia-industry consortium, see: http://www.hycom.org/ and NCODA, public data from the U.S. Navy, see: https://www.fnmoc.navy.mil/public/. Image provided by Gerard Nihous.

Image Caption #2: An example of early OTEC field work in Hawaii: aerial view of the land-based experimental open-cycle OTEC plant that operated between 1993 and 1998 on the Big Island. The facility still holds the world record for OTEC power production, with turbo-generator output exceeding 250 kW and more than 100 kW of net power exported to the grid.

Image #2 Photo credit: Luis Vega.

Audio clip portions of an interview with the researcher is also available. For more details, contact: jbardi@aip.org

JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY

Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal published by the American Institute of Physics (AIP) that covers all areas of renewable and sustainable energy-related fields that apply to the physical science and engineering communities. As an electronic-only, Web-based journal with rapid publication time, JRSE is responsive to the many new developments expected in this field. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. See: http://jrse.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>