Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next-gen e-readers: Improved 'peacock' technology could lock in color for high-res displays

06.02.2013
Iridescence, or sheen that shifts color depending on your viewing angle, is pretty in peacock feathers. But it's been a nuisance for engineers trying to mimic the birds' unique color mechanism to make high-resolution, reflective, color display screens.

Now, researchers at the University of Michigan have found a way to lock in so-called structural color, which is made with texture rather than chemicals. A paper on the work is published online in the current edition of the Nature journal Scientific Reports.

In a peacock's mother-of-pearl tail, precisely arranged hairline grooves reflect light of certain wavelengths. That's why the resulting colors appear different depending on the movement of the animal or the observer. Imitating this system—minus the rainbow effect—has been a leading approach to developing next-generation reflective displays.

The new U-M research could lead to advanced color e-books and electronic paper, as well as other color reflective screens that don't need their own light to be readable. Reflective displays consume much less power than their backlit cousins in laptops, tablet computers, smartphones and TVs. The technology could also enable leaps in data storage and cryptography. Documents could be marked invisibly to prevent counterfeiting.

Led by Jay Guo, professor of electrical engineering and computer science, the researchers harnessed the ability of light to funnel into nanoscale metallic grooves and get trapped inside. With this approach, they found the reflected hues stay true regardless of the viewer's angle.

"That's the magic part of the work," Guo said. "Light is funneled into the nanocavity, whose width is much, much smaller than the wavelength of the light. And that's how we can achieve color with resolution beyond the diffraction limit. Also counterintuitive is that longer wavelength light gets trapped in narrower grooves."

The diffraction limit was long thought to be the smallest point you could focus a beam of light to. Others have broken the limit as well, but the U-M team did so with a simpler technique that also produces stable and relatively easy-to-make color, Guo said.

"Each individual groove—much smaller than the light wavelength—is sufficient to do this function. In a sense, only the green light can fit into the nanogroove of a certain size," Guo said.

The U-M team determined what size slit would catch what color light. Within the framework of the print industry standard cyan, magenta and yellow color model, the team found that at groove depths of 170 nanometers and spacing of 180 nanometers, a slit 40 nanometers wide can trap red light and reflect a cyan color. A slit 60 nanometers wide can trap green and make magenta. And one 90 nanometers wide traps blue and produces yellow. The visible spectrum spans from about 400 nanometers for violet to 700 nanometers for red.

"With this reflective color, you could view the display in sunlight. It's very similar to color print," Guo said.

To make color on white paper, (which is also a reflective surface), printers arrange pixels of cyan, magenta and yellow in such a way that they appear to our eyes as the colors of the spectrum. A display that utilized Guo's approach would work in a similar way.

To demonstrate their device, the researchers etched nanoscale grooves in a plate of glass with the technique commonly used to make integrated circuits, or computer chips. Then they coated the grooved glass plate with a thin layer of silver. When light—which is a combination of electric and magnetic field components—hits the grooved surface, its electric component creates what's called a polarization charge at the metal slit surface, boosting the local electric field near the slit. That electric field pulls a particular wavelength of light in.

Right now, the new device can make static pictures, and the researchers hope to develop a moving picture version in the near future.

The research is funded by the Air Force Office of Scientific Research and the National Science Foundation. The paper is titled "Angle-Insensitive Structural Colours based on Metallic Nanocavities and Coloured Pixels beyond the Diffraction Limit."

Abstract: www.nature.com/srep/2013/130201/srep01194/full/srep01194.html
Jay Guo: http://web.eecs.umich.edu/~guo

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Power and Electrical Engineering:

nachricht Vortex laser offers hope for Moore's Law
29.07.2016 | University at Buffalo

nachricht Ultra-flat circuits will have unique properties
26.07.2016 | Rice University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>