Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GE Successfully Trials Breakthrough High Temperature Superconducting Technology for Next Generation Power Generation

04.04.2013
• "Hydrogenie" compact power generation technology tested in Rugby, England, runs at 50 Kelvin
• GE's Superconductive technology research offers significant advantages in efficiency as well as size, mass and weight reductions compared with conventional machines
• Impact on production of energy from alternative energy sources could be substantial

GE's Power Conversion business (NYSE: GE) has taken an important step in testing a viable way of producing large amounts of electricity from renewable resources using superconductors running at relatively high temperatures.


The inner rotor of GE’s breakthrough high temperature superconducting technology, Hydrogenie. Running at 50 Kelvin the superconductive technology offers significant advantages in efficiency as well as size, mass and weight reductions compared with conventional machines.
(Photo: GE Power Conversion: GEPCPR148)

The company has successfully completed trials of Hydrogenie, a power generator incorporating ground breaking technologies that enable highly efficient production of electricity in a small space. Hydrogenie makes use of superconductors instead of copper for the rotor windings on the motor, operating at 43 Kelvin, or -230°C. It was tested late last year up to and well beyond its full rated load 1.7MW spinning at 214 rpm, and met expectations and design predictions. The tests were carried out at a GE Power Conversion facility in Rugby, England.

Until recently, superconductivity could only be achieved at around 4K (-269°C). But new “high temperature superconductors” (HTS) exhibit the phenomenon at much higher temperatures. Such machines will need less complex insulation systems and less powerful cooling than used hitherto on devices such as medical MRI magnets.

“This technology is a true breakthrough,” says Martin Ingles, Hydrogenie project manager at GE Power Conversion. “It could radically improve the efficiency of equipment producing electricity from water and from wind, and may also be suitable for further applications down the road.”

Latest superconductors are made by depositing a superconducting layer of ceramic onto a relatively cheap base metal. They have virtually no resistance to electrical current when cooled to very low temperatures, so windings can be made with wires having a cross section around 2% that of a conventional copper wire winding.

More windings can be fitted into electromagnet coils, resulting in a higher power magnet that is substantially smaller or lighter than before. Superconductivity offers significant advantages in efficiency, and significant weight reductions compared with conventional machines. The greatest benefits in terms of size and mass reduction are for applications where high torque machines are typically used, most likely as a direct drive application in installations such as wind turbines, ship propulsion or run-of-river hydro plants.

GE has overcome significant technical challenges relating to the cryogenic cooling and thermal insulation required to keep the superconductors at the required temperature. Extremely cold helium gas is piped through a rotating coupling into the machine rotor and then circulated around the individual coils. “It’s rather like trying to keep ice cubes frozen on a rotisserie in a very hot oven,” says Ingles. “Except that our rotisserie is rather high tech.”

The rotor is located inside a vacuum, but still has some direct contact, via its shaft, with the outside world. This creates issues relating to the massive temperature differences along the shaft.

The machine incorporates a patented method for transferring torque from cold HTS coils to the machine rotor. Low resistance thermal joints and assemblies ensure that low cooling power is required to cool the coils. In fact, the machine demonstrates all of the technologies required to make HTS machines a commercial reality. GE’s Power Conversion business did much of the development of the Hydrogenie 1.7 MW 214 rpm HTS generator as part of the EU Framework Programme 6 funded project that ran between 2006 and 2010.

The successful completion of the Hydrogenie project will set the framework for continued research and development in the study of superconducting machines. One specific area that may potentially benefit in the future is the upgrading of older run-of-river power plants. Coupled with running the machine/turbine at variable speed the benefits could allow efficiency improvements of up to 12% at part load.

The technology building blocks developed as part of the project will also be used in other businesses where high torque and slow speed machines are in use. The most immediate areas of demand are in wind power generation and in marine propulsion.

A superconducting wind turbine generator may permit significant reductions of mass mounted on the tower, thus helping to reduce the cost for the tower itself and its foundations. Recent studies conducted for GE Power Conversion show that the lifetime energy saving for a superconducting wind turbine compared to a conventional machine could be as much as 20%, for offshore or desert machines above 10MW.

On ships, HTS technology combined with DC or variable AC systems can result in up to 4% fuel savings, while the reduced size of the motors will be attractive to naval architects leaving more space for payload or passengers.

Other partners in the EU Framework Programme 6 funded project, “Development and field testing of a compact HTS hydro power generator with reduced investment costs, lowered environmental impacts and strongly improved performance to reduce the price per KWh,” were: Zenergy Power; KEMA Nederland; Stirling Cryogenics & Refrigeration; Silesian University of Technology; Cobham CTS; E.On Wasserkraft.

Stephanie Bush | EMG
Further information:
http://www.ge.com

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>