Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fuel Cell Mobile Lighting System Featured at Space Shuttle Atlantis Launch

18.07.2011
Fuel cells are used in the space shuttle as one component of the electrical power system, so perhaps it was appropriate that a hydrogen fuel cell-powered mobile lighting system could be seen on the grounds of the Kennedy Space Center as the Space Shuttle Atlantis launched into space last week, the 135th and final mission for the NASA Space Shuttle Program.

The lighting system, sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) in conjunction with Boeing Co., and developed by Sandia National Laboratories with several industry partners, was deployed to the site of the final space shuttle launch and observed by visitors, shuttle astronauts and members of the international media.

The unit provided lighting in the international press area, and its auxiliary power was used to conveniently recharge the camera battery packs for a number of photographers at the event. The NASA deployment was the latest in a series of high-profile test sites where the lighting system has been utilized.

The hydrogen fuel cell-powered mobile lighting system is a clean, quiet and efficient alternative to traditional technologies commonly powered by diesel fueled generators. The system features a fuel cell running on pure hydrogen, resulting in zero-emission electrical power. The fuel cell produces electricity for an advanced, power-saving Light Emitting PlasmaTM (LEP) lighting system and additional auxiliary power up to 2.5 kW, which allows additional equipment (such as power tools, public address systems or security metal detectors) to be powered by the unit at the same time the system is providing illumination.

Current mobile lighting typically uses diesel fueled generators that produce greenhouse gases such as carbon dioxide nitrogen oxides, which produce pollutants and create smog, and soot, making them environmentally objectionable. In addition, diesel units are noisy and can create a safety hazard when construction personnel are distracted and cannot hear oncoming traffic.

Sandia researchers estimate that a single hydrogen fuel cell-powered lighting system would offset 900 gallons of diesel fuel per year and completely eliminate soot, nitrogen-oxide and carbon-dioxide emissions, allowing the system to be used indoors in contrast to current diesel technology.

“This hydrogen fuel cell-powered mobile lighting system has the very real potential to drastically reduce dependence on diesel-fueled mobile lighting across the United States and abroad,” said Lennie Klebanoff, Sandia’s project lead.

The prototype system has been tested in a variety of environments and has primarily focused on the entertainment, transportation and airport sectors. In addition to NASA (which also used the system during the Space Shuttle Endeavor launch) customers who have provided test sites include the California Department of Transportation, the 2010 Academy Awards ceremony, the 2011 Golden Globe Awards, the 2011 Screen Actors Guild Awards and the 2011 Grammy Awards. Boeing, the San Francisco International Airport and Paramount Pictures will soon be deploying units as well.

In addition to the DOE’s sponsorship and Sandia’s design and technical management role, the industry partners on the project include Boeing, Multiquip Inc., Altergy Systems, Luxim Corp., Lumenworks Inc., Stray Light Optical Technologies, Golden State Energy and Ovonic Hydrogen Solutions. The California Fuel Cell Partnership has provided support on hydrogen fuel for several deployments. Multiquip is implementing a manufacturing and commercialization plan for the system.

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Mike Janes | Newswise Science News
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>