Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frontiers of optical science: new axis for laser optics

23.06.2014

The June 2014 issue of the University of Electro-Communications e-Bulletin includes research highlights on Raman scattering for laser optical communications; fuzzy control systems; optical signal processing; pharmacophores and future of drug discovery; hybrid dye solar cells.

Source: International Public Relations, University of Electro-Communications, Tokyo


Image 1

Ultrashort pulses of light produced by Raman scattering from hydrogen for next generation laser optical communications


Frontiers of optical science: Ultrashort pulses of light produced by Raman scattering from hydrogen for next generation laser optical communications
 
Masayuki Katsuragawa describes his research on the manipulation of light-matter interaction for producing ultra-short pulses of laser light. “Our recent experiments on adiabatic stimulated Raman scattering in parahydrogen show potential for the realization of laser light sources producing pulses at terahertz repetition-rate frequencies. These ultra-short pulses offer a new 'axis' in the evolution of laser based optical science."


Control systems: Fuzzy features
 
The natural world is not always logical, and precise states such as 'true' or 'false' are quite rare. The field of fuzzy logic takes account of this fact by creating models in which truth is represented on a continuous scale between 0 and 1. Mathematical control systems based on fuzzy logic have proved useful for real-world situations such as handwriting recognition on pocket computers, auto-focusing on cameras, and earthquake prediction. Kazuo Tanaka and colleagues at the University of Electro-Communications in Tokyo, with co-workers at Kyushu Institute of Technology and Boston University, USA, have used a sum-of-squares approach to design effective observers within three classes of T-S fuzzy systems.


Optical signal processing: Neater networks
 

The demand for fast access to data through optical networks requires technology that can handle ever more complex and high-bandwidth signals. However, the signal processing usually requires conversions from optical to electronic and back again, which can be power-hungry and expensive.
Now, Hung Nguyen Tan, Motoharu Matsuura and Naoto Kishi at the University of Electro-Communications in Tokyo have built an optical switching device that not only performs WDM, but also processes signals with different data formats, and convert signals between formats.


Pharmacophores: The future of drug discovery
 

Developing new drugs that bind exclusively to target cells in diseases such as cancer is crucial. Masumi Taki and co-workers at the University of Electro-Communications in Tokyo, together with scientists at Kagoshima University, Japan, have expanded on current drug discovery methods to create a hybrid-drug generating system for this purpose. Their system uses 'artificial-molecule evolution'- taking non-natural core molecules and adapting and optimizing them to make new 'pharmacophores'. A pharmacophore is a molecular model which can be manipulated to bind molecules for targets such as cancer cells.


Hybrid solar cells: The Mechanism of dyeing for greater efficiency
 

Light-harvesting organic materials have the potential to provide low cost electricity through solar power. However, current designs for organic-inorganic hybrid solar cells (OIHSCs) suffer weaknesses at the interface between organic and inorganic components and this limits efficiency. Now, Qing Shen at the University of Electro-Communications, Tokyo, and Shuzi Hayase at Kyushu Institute of Technology together with scientists in Hayase JST CREST Research Team across Japan, have succeeded in clarifying the mechanism for improving the performance of an OIHSC by adding a dye sensitizer directly onto the organic-inorganic interface.


Further information:
International Public Relations
The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585
E-mail: ru-info-ml@uec.ac.jp

Website: http://www.uec.ac.jp/

About The University of Electro-Communications

The University of Electro-Communications (UEC) in Tokyo is a small, luminous university at the forefront of applied sciences, engineering, and technology research. Its roots go back to the Technical Institute for Wireless Commutations, which was established in 1918 by the Wireless Association to train so-called wireless engineers in maritime communications in response to the Titanic disaster in 1912. In 1949, the UEC was established as a national university by the Japanese Ministry of Education, and moved in 1957 from Meguro to its current Chofu campus Tokyo. With approximately 4,000 students and 350 faculty, UEC is regarded as a small university, but with particular expertise in wireless communications, laser science, robotics, informatics, and material science, to name just a few areas of research. The UEC was selected for the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Program for Promoting the Enhancement of Research Universities as a result of its strengths in three main areas: optics and photonics research, where we are number one for the number of joint publications with foreign researchers; wireless communications, which reflects our roots; and materials-based research, particularly on fuel cells.

Website: http://www.uec.ac.jp/

Associated links

Adarsh Sandhu | Research SEA News

Further reports about: Education Electro-Communications Optical Relations Technology Wireless networks optics processing signals

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>