Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frontiers of optical science: new axis for laser optics

23.06.2014

The June 2014 issue of the University of Electro-Communications e-Bulletin includes research highlights on Raman scattering for laser optical communications; fuzzy control systems; optical signal processing; pharmacophores and future of drug discovery; hybrid dye solar cells.

Source: International Public Relations, University of Electro-Communications, Tokyo


Image 1

Ultrashort pulses of light produced by Raman scattering from hydrogen for next generation laser optical communications


Frontiers of optical science: Ultrashort pulses of light produced by Raman scattering from hydrogen for next generation laser optical communications
 
Masayuki Katsuragawa describes his research on the manipulation of light-matter interaction for producing ultra-short pulses of laser light. “Our recent experiments on adiabatic stimulated Raman scattering in parahydrogen show potential for the realization of laser light sources producing pulses at terahertz repetition-rate frequencies. These ultra-short pulses offer a new 'axis' in the evolution of laser based optical science."


Control systems: Fuzzy features
 
The natural world is not always logical, and precise states such as 'true' or 'false' are quite rare. The field of fuzzy logic takes account of this fact by creating models in which truth is represented on a continuous scale between 0 and 1. Mathematical control systems based on fuzzy logic have proved useful for real-world situations such as handwriting recognition on pocket computers, auto-focusing on cameras, and earthquake prediction. Kazuo Tanaka and colleagues at the University of Electro-Communications in Tokyo, with co-workers at Kyushu Institute of Technology and Boston University, USA, have used a sum-of-squares approach to design effective observers within three classes of T-S fuzzy systems.


Optical signal processing: Neater networks
 

The demand for fast access to data through optical networks requires technology that can handle ever more complex and high-bandwidth signals. However, the signal processing usually requires conversions from optical to electronic and back again, which can be power-hungry and expensive.
Now, Hung Nguyen Tan, Motoharu Matsuura and Naoto Kishi at the University of Electro-Communications in Tokyo have built an optical switching device that not only performs WDM, but also processes signals with different data formats, and convert signals between formats.


Pharmacophores: The future of drug discovery
 

Developing new drugs that bind exclusively to target cells in diseases such as cancer is crucial. Masumi Taki and co-workers at the University of Electro-Communications in Tokyo, together with scientists at Kagoshima University, Japan, have expanded on current drug discovery methods to create a hybrid-drug generating system for this purpose. Their system uses 'artificial-molecule evolution'- taking non-natural core molecules and adapting and optimizing them to make new 'pharmacophores'. A pharmacophore is a molecular model which can be manipulated to bind molecules for targets such as cancer cells.


Hybrid solar cells: The Mechanism of dyeing for greater efficiency
 

Light-harvesting organic materials have the potential to provide low cost electricity through solar power. However, current designs for organic-inorganic hybrid solar cells (OIHSCs) suffer weaknesses at the interface between organic and inorganic components and this limits efficiency. Now, Qing Shen at the University of Electro-Communications, Tokyo, and Shuzi Hayase at Kyushu Institute of Technology together with scientists in Hayase JST CREST Research Team across Japan, have succeeded in clarifying the mechanism for improving the performance of an OIHSC by adding a dye sensitizer directly onto the organic-inorganic interface.


Further information:
International Public Relations
The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585
E-mail: ru-info-ml@uec.ac.jp

Website: http://www.uec.ac.jp/

About The University of Electro-Communications

The University of Electro-Communications (UEC) in Tokyo is a small, luminous university at the forefront of applied sciences, engineering, and technology research. Its roots go back to the Technical Institute for Wireless Commutations, which was established in 1918 by the Wireless Association to train so-called wireless engineers in maritime communications in response to the Titanic disaster in 1912. In 1949, the UEC was established as a national university by the Japanese Ministry of Education, and moved in 1957 from Meguro to its current Chofu campus Tokyo. With approximately 4,000 students and 350 faculty, UEC is regarded as a small university, but with particular expertise in wireless communications, laser science, robotics, informatics, and material science, to name just a few areas of research. The UEC was selected for the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Program for Promoting the Enhancement of Research Universities as a result of its strengths in three main areas: optics and photonics research, where we are number one for the number of joint publications with foreign researchers; wireless communications, which reflects our roots; and materials-based research, particularly on fuel cells.

Website: http://www.uec.ac.jp/

Associated links

Adarsh Sandhu | Research SEA News

Further reports about: Education Electro-Communications Optical Relations Technology Wireless networks optics processing signals

More articles from Power and Electrical Engineering:

nachricht “Virtual Lab” Specializes in Ultra-High Efficiency Solar Cells from Europe
25.06.2015 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Efficient conversion from spin currents to charge currents in a superconductor
24.06.2015 | The University of Tokyo

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

Ultrasonic Fingerprint Sensor May Take Smartphone Security to New Level

01.07.2015 | Materials Sciences

Europeans have unknowingly contributed to the spread of invasive plant species in North America

01.07.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>