Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frequency Converter Enables Ultra-High Sensitivity Infrared Spectrometry

28.08.2009
In what may prove to be a major development for scientists in fields ranging from forensics to quantum communications, researchers at the National Institute of Standards and Technology (NIST) have developed a new, highly sensitive, low-cost technique for measuring light in the near-infrared range.

The technique can measure the spectrum of the specific wavelengths of near infrared light used widely in telecommunications as well as the very weak infrared light at single-photon levels given off by fragile biomaterials and nanomaterials. They described their results in a recent issue of Optics Express.*

A single photon detector is the key device needed to build highly sensitive instruments for measuring spectra. For the past 30 years, scientists have made steady progress increasing the efficiency and sensitivity of visible and ultraviolet photon detectors while methods for detecting elusive single photons in the near-infrared (NIR) range have faltered. The methods presently in use are too static-laden, inefficient and slow, or depend on superconducting detectors, which require expensive, low-temperature operating environments. The NIST group, Lijun Ma, Oliver Slattery and Xiao Tang, wanted to develop a way to use existing detectors such as avalanche photodiode detectors (APD), which work very well for detecting visible light and are widely used, but are ineffective for the detection of NIR.

Their approach was to adapt a technique developed two years ago at NIST for quantum cryptography that “up converts” photons at one frequency to a higher frequency. The technique promotes the infrared photons up to the visible range using a strong, tunable laser. During the frequency conversion process, the narrow-band pump laser scans the infrared signal photons and converts only those that have the desired polarization and wavelength to visible light. Once converted to visible light, the signal photons are easily detected by commercially available APDs. According to Tang, the new system enables the measurement of spectra with sensitivity of more than 1,000 times that of common commercial optical spectral instruments.

“Our key achievement here was to reduce the noise, but our success would not have been possible without the many years of work by others in this field,” says Tang. “We hope that our discovery will open doors for researchers studying diseases, pharmaceuticals, secure communications and even solving crimes. We are very excited to make this technology available to the larger scientific community.”

* L. Ma, O. Slattery and X. Tang. Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector. Optics Express. Vol. 17, No. 16. Aug. 3, 2009.

Mark Esser | Newswise Science News
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Did you know that infrared heat and UV light contribute to the success of your barbecue?
26.07.2017 | Heraeus Noblelight GmbH

nachricht Ultrathin device harvests electricity from human motion
24.07.2017 | Vanderbilt University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>