Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer POLO announces roll-to-roll pilot production of transparent barrier films

26.05.2010
Fraunhofer POLO announces roll-to-roll pilot production of transparent barrier films for encapsulation of flexible electronics and solar cells.

Researchers from the Fraunhofer Polymer Surfaces Alliance POLO (Fraunhofer POLO) have developed highly efficient barrier films suitable for roll-to-roll production and that are now being produced on a pilot plant scale.

The scientists have developed a sandwich structure of inorganic ceramic layers, which embed the patented hybrid coating ORMOCER®. The system has a very low water permeability of 2 x 10-4 g/m2/d, as measured in a calcium test at 38°C and 90% r.h.. Dr. Sabine Amberg-Schwab, spokesperson of the Fraunhofer POLO, points out: »The unique properties of the hybrid ORMOCER® layer boost the barrier properties of the inorganic barrier layers. This makes the barrier films suitable for demanding technical applications, such as for flexible electronic devices.«

The processing technology is a big step towards efficient large-area production of flexible electronic devices such as flexible solar cells, flexible OLEDs, and LCD-displays. The Fraunhofer POLO can reproducibly apply the barrier film to various polymeric materials in a roll-to-roll process on a pilot plant scale. Dr. Nicolas Schiller, head of the »Flexible Products« department stresses: »The availability of barrier films on a pilot scale is essential for developers of flexible electronic components. Moreover, the Fraunhofer POLO can customize films with further functionalities such as transparent conducting electrodes.

We invite customers to govern the route for further developments in cooperation with Fraunhofer POLO.« Dr. Sabine Amberg-Schwab adds: »Our barrier material has superior performance, and the films are flexible and easy to use. We offer customers our expertise and assistance on film application and handling operations. We also assist customers in the selection of adhesives and in the integration of our material into their production processes.«

In a nutshell, the ultra-barrier films are very versatile. Their properties can be adapted as required by the device manufacturer and various polymeric materials can act as suitable substrates. In addition, the barrier film can be produced as needed and independently of the production of the device, and can then be laminated onto the substrate.

About the Fraunhofer POLO

The Fraunhofer Polymer Surfaces Alliance POLO brings together the individual expertise of seven Fraunhofer Institutes and develops innovative concepts for the functionalization of polymer surfaces.

The Fraunhofer POLO offers support throughout the whole development phase, namely from the first fundamental experiments right through to scale-up and automation of the processes. The Fraunhofer POLO is the ideal partner for companies that manufacture and process polymers, and for users of polymers.

POLO spokesperson:

Dr. Sabine Amberg-Schwab
Phone +49 931 4100-620
sabine.amberg-schwab@isc.fraunhofer.de
Requests for pilot production of barrier films:
Dr. Nicolas Schiller
Phone +49 351 2586-131
nicolas.schiller@fep.fraunhofer.de
Press contact:
Annett Arnold
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.polo.fraunhofer.de/en/index.html

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>