Fraunhofer IWS scientists are now able to offer n-conductive polymers as processable paste

Printed TEG (thermoelectric generator) made of p- and n-conductive polymer and silver contact © Fraunhofer IWS Dresden

At first sight, for many people conductive polymers are paradox, in particular, when we think of those plastics we are surrounded by in everyday life. Nevertheless conductive polymers are already used in many technical applications, e.g. batteries, LCD screens, transistors and solar cells.

Actually it has already been known in the eighties that the electrical conductivity of polymers may reach that of metals. In 2000, the Nobel Prize for Chemistry was awarded exactly for this discovery.

The main difference between polymers and metals is the fact that in the case of metal, electrons are responsible for the electrical conduction process. However, in commercially available polymers (e.g. PEDOT: PSS) charge carriers with positive elementary charge are responsible for electrical conductivity (p-conductivity).

The design of completely electronical components requires p-conductive as well as n-conductive material. N-conductive polymers are often the famous bottleneck in many technical applications. Often they show poor electrical conductivity and structural integri-ty. Both properties strongly suffer from degradation due to environmental influences.

In 2015, however, the IWS group “Printing” successfully synthesized an n-type polymer with an enhanced conductivity of one order of magnitude (compared to the values in literature of other n-conductive polymers, http://www.iws.fraunhofer.de/en/pressandmedia/press_releases/2015/press_release_…).

Nevertheless, applications of n-conductive polymers had to face further challenges. Similar to its p-type archetype PEDOT, the IWS-developed polymer was also almost insoluble in all known solutions. This challenge has been mastered now! For the very first time a thermoelectric generator (a device which is able to generate electrical power) has been designed and tested. The Dresdner scientists are going to present their results at the “14th European Conference on Thermoelectrics” in Lisbon.

Material development, system design and manufacturing technologies of thermoelectric generators will be important topics of the workshop “Energy Harvesting Systems – FlexTEG“, taking place at the Fraunhofer IWS Dresden on September 26 – 27, 2016. Please find further information at: http://www.iws.fraunhofer.de/flexteg.

Contact:

Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden
01277 Dresden, Winterbergstr. 28
Germany

Lukas Stepien
Phone: +49 351 83391-3092
Fax: +49 351 83391-3300
E-Mail: lukas.stepien@iws.fraunhofer.de

Public Relations
Dr. Ralf Jäckel
Phone: +49 351 83391-3444
Fax: +49 351 83391-3300
E-Mail: ralf.jaeckel@iws.fraunhofer.de

Internet:
http://www.iws.fraunhofer.de und
http://www.iws.fraunhofer.de/en/pressandmedia/press_releases.html

http://www.iws.fraunhofer.de und
http://www.iws.fraunhofer.de/en/pressandmedia/press_releases.html
http://www.iws.fraunhofer.de/flexteg

Media Contact

Dr. Ralf Jaeckel Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors