Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IWS scientists are now able to offer n-conductive polymers as processable paste

09.09.2016

The Fraunhofer IWS has made another important step forward with respect to the research on n-conductive polymers for printed electronics. The Dresden scientists succeeded in modifying an n-conductive polymer, already synthesized in 2015, in such a way that it can now be processed as a paste and be printed in a three-dimensional manner.

At first sight, for many people conductive polymers are paradox, in particular, when we think of those plastics we are surrounded by in everyday life. Nevertheless conductive polymers are already used in many technical applications, e.g. batteries, LCD screens, transistors and solar cells.


Printed TEG (thermoelectric generator) made of p- and n-conductive polymer and silver contact

© Fraunhofer IWS Dresden

Actually it has already been known in the eighties that the electrical conductivity of polymers may reach that of metals. In 2000, the Nobel Prize for Chemistry was awarded exactly for this discovery.

The main difference between polymers and metals is the fact that in the case of metal, electrons are responsible for the electrical conduction process. However, in commercially available polymers (e.g. PEDOT: PSS) charge carriers with positive elementary charge are responsible for electrical conductivity (p-conductivity).

The design of completely electronical components requires p-conductive as well as n-conductive material. N-conductive polymers are often the famous bottleneck in many technical applications. Often they show poor electrical conductivity and structural integri-ty. Both properties strongly suffer from degradation due to environmental influences.

In 2015, however, the IWS group “Printing” successfully synthesized an n-type polymer with an enhanced conductivity of one order of magnitude (compared to the values in literature of other n-conductive polymers, http://www.iws.fraunhofer.de/en/pressandmedia/press_releases/2015/press_release_...).

Nevertheless, applications of n-conductive polymers had to face further challenges. Similar to its p-type archetype PEDOT, the IWS-developed polymer was also almost insoluble in all known solutions. This challenge has been mastered now! For the very first time a thermoelectric generator (a device which is able to generate electrical power) has been designed and tested. The Dresdner scientists are going to present their results at the “14th European Conference on Thermoelectrics” in Lisbon.

Material development, system design and manufacturing technologies of thermoelectric generators will be important topics of the workshop “Energy Harvesting Systems – FlexTEG“, taking place at the Fraunhofer IWS Dresden on September 26 - 27, 2016. Please find further information at: http://www.iws.fraunhofer.de/flexteg.

Contact:

Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden
01277 Dresden, Winterbergstr. 28
Germany

Lukas Stepien
Phone: +49 351 83391-3092
Fax: +49 351 83391-3300
E-Mail: lukas.stepien@iws.fraunhofer.de

Public Relations
Dr. Ralf Jäckel
Phone: +49 351 83391-3444
Fax: +49 351 83391-3300
E-Mail: ralf.jaeckel@iws.fraunhofer.de

Internet:
http://www.iws.fraunhofer.de und
http://www.iws.fraunhofer.de/en/pressandmedia/press_releases.html

Weitere Informationen:

http://www.iws.fraunhofer.de und
http://www.iws.fraunhofer.de/en/pressandmedia/press_releases.html
http://www.iws.fraunhofer.de/flexteg

Dr. Ralf Jaeckel | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>