Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IWS scientists are now able to offer n-conductive polymers as processable paste

09.09.2016

The Fraunhofer IWS has made another important step forward with respect to the research on n-conductive polymers for printed electronics. The Dresden scientists succeeded in modifying an n-conductive polymer, already synthesized in 2015, in such a way that it can now be processed as a paste and be printed in a three-dimensional manner.

At first sight, for many people conductive polymers are paradox, in particular, when we think of those plastics we are surrounded by in everyday life. Nevertheless conductive polymers are already used in many technical applications, e.g. batteries, LCD screens, transistors and solar cells.


Printed TEG (thermoelectric generator) made of p- and n-conductive polymer and silver contact

© Fraunhofer IWS Dresden

Actually it has already been known in the eighties that the electrical conductivity of polymers may reach that of metals. In 2000, the Nobel Prize for Chemistry was awarded exactly for this discovery.

The main difference between polymers and metals is the fact that in the case of metal, electrons are responsible for the electrical conduction process. However, in commercially available polymers (e.g. PEDOT: PSS) charge carriers with positive elementary charge are responsible for electrical conductivity (p-conductivity).

The design of completely electronical components requires p-conductive as well as n-conductive material. N-conductive polymers are often the famous bottleneck in many technical applications. Often they show poor electrical conductivity and structural integri-ty. Both properties strongly suffer from degradation due to environmental influences.

In 2015, however, the IWS group “Printing” successfully synthesized an n-type polymer with an enhanced conductivity of one order of magnitude (compared to the values in literature of other n-conductive polymers, http://www.iws.fraunhofer.de/en/pressandmedia/press_releases/2015/press_release_...).

Nevertheless, applications of n-conductive polymers had to face further challenges. Similar to its p-type archetype PEDOT, the IWS-developed polymer was also almost insoluble in all known solutions. This challenge has been mastered now! For the very first time a thermoelectric generator (a device which is able to generate electrical power) has been designed and tested. The Dresdner scientists are going to present their results at the “14th European Conference on Thermoelectrics” in Lisbon.

Material development, system design and manufacturing technologies of thermoelectric generators will be important topics of the workshop “Energy Harvesting Systems – FlexTEG“, taking place at the Fraunhofer IWS Dresden on September 26 - 27, 2016. Please find further information at: http://www.iws.fraunhofer.de/flexteg.

Contact:

Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden
01277 Dresden, Winterbergstr. 28
Germany

Lukas Stepien
Phone: +49 351 83391-3092
Fax: +49 351 83391-3300
E-Mail: lukas.stepien@iws.fraunhofer.de

Public Relations
Dr. Ralf Jäckel
Phone: +49 351 83391-3444
Fax: +49 351 83391-3300
E-Mail: ralf.jaeckel@iws.fraunhofer.de

Internet:
http://www.iws.fraunhofer.de und
http://www.iws.fraunhofer.de/en/pressandmedia/press_releases.html

Weitere Informationen:

http://www.iws.fraunhofer.de und
http://www.iws.fraunhofer.de/en/pressandmedia/press_releases.html
http://www.iws.fraunhofer.de/flexteg

Dr. Ralf Jaeckel | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

More articles from Power and Electrical Engineering:

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>