Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IWES ready for testing XXL rotor blades

10.06.2011
A ceremony on Thursday 9th June marked the official opening of the 90 meter test stand for rotor blades at Fraunhofer IWES.

The construction work took one and half years and the new 20,000 square meter facility doubles the existing capacity for testing complete rotor blades. A tiltable mounting block allows full bending of the blade tips, even for very long rotor blades, and also facilitates the mounting process. The new building represents an investment of 11 million euros and will make a key contribution to assuring the quality of rotor blade prototypes.


Long, longer, the longest: the new test stand allows rotor blade testing on a new scale.
Wolfhard Scheer


Engineer at the manway - this is the point where the rotor blade is mounted on the fixing block.
Falko Bürkner, Fraunhofer IWES

A test facility for heavy loads on sandy soil directly at the water’s edge – this was the starting situation for an extraordinary challenge. When the 200 foundation piles were positioned in January 2010 shortly after the first spade of soil was removed, the construction site looked like the excavation works for an ancient temple. A mounting block weighing 1000 metric tons and load transference of up to 500 kN per load point, which is applied to the rotor blade during testing, make this structure necessary.

Fraunhofer IWES has built a unique testing facility at its site in Bremerhaven that allows rotor blade prototypes to be subjected to very realistic loads. The facility was funded by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), the Fraunhofer-Gesellschaft, the State of Bremen, and the European Fund for Regional Development (EFRD). The rotor blade tests deliver, in accordance with IEC requirements, meaningful statements in just a few months about whether a rotor blade can withstand a service life of 20 years undamaged. Compared to the existing testing hall for 70 meter blades, which has been in operation since 2009 and is already operating at full capacity, the new facility not only provides the space for very long rotor blades to be tested but also features a tiltable mounting block.

As this huge steel block can assume an angle of tilt of up to 20 degrees, the tips of even very large blades can be bent by 30 meters. The block also facilitates the mounting of the rotor blades. With the ability to test rotor blades that are, for example, being designed for large 10 MW wind turbines, Fraunhofer IWES is well equipped for the future: “This 90 meter test facility will certainly see us through the coming years and takes into account the current trend towards large rotor blades“, says Prof. Dr. Andreas Reuter, Director of the Fraunhofer IWES in Bremerhaven. Instead of having large generators, the focus will be on larger rotors. This will allow more hours of operation at full load and this is the reason for the change in emphasis, explains Reuter. The main challenge here is to realize aerodynamic efficiency without notable extra weight and additional costs.

The requirements of industry have been taken into account in the design of the test stand: A steering committee, comprising representatives from industry, have supervised the project from the initial planning stage right through to the operational phase. For example, new combinations of materials and new rotor blade designs can now be tested before they are taken into series production. This work is often also undertaken via publicly funded research projects. “We are developing innovative testing and monitoring methods that demonstrate to customers how rotor blades perform under realistic loads,” explains Dr. Arno van Wingerde, Head of the Competence Center for Rotor Blades at Fraunhofer IWES.

The first test began just a few days after the celebration to mark the start-up of operations. As the new test stand is already in high demand, the next expansion step is not long away: This autumn another mounting block will be installed in the 90 meter testing hall.

Britta Rollert | Fraunhofer-Institut
Further information:
http://www.iwes.fraunhofer.de

Further reports about: IWES XXL rotor blade rotor blade prototypes test facility wind turbine

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>