Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IWES ready for testing XXL rotor blades

10.06.2011
A ceremony on Thursday 9th June marked the official opening of the 90 meter test stand for rotor blades at Fraunhofer IWES.

The construction work took one and half years and the new 20,000 square meter facility doubles the existing capacity for testing complete rotor blades. A tiltable mounting block allows full bending of the blade tips, even for very long rotor blades, and also facilitates the mounting process. The new building represents an investment of 11 million euros and will make a key contribution to assuring the quality of rotor blade prototypes.


Long, longer, the longest: the new test stand allows rotor blade testing on a new scale.
Wolfhard Scheer


Engineer at the manway - this is the point where the rotor blade is mounted on the fixing block.
Falko Bürkner, Fraunhofer IWES

A test facility for heavy loads on sandy soil directly at the water’s edge – this was the starting situation for an extraordinary challenge. When the 200 foundation piles were positioned in January 2010 shortly after the first spade of soil was removed, the construction site looked like the excavation works for an ancient temple. A mounting block weighing 1000 metric tons and load transference of up to 500 kN per load point, which is applied to the rotor blade during testing, make this structure necessary.

Fraunhofer IWES has built a unique testing facility at its site in Bremerhaven that allows rotor blade prototypes to be subjected to very realistic loads. The facility was funded by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), the Fraunhofer-Gesellschaft, the State of Bremen, and the European Fund for Regional Development (EFRD). The rotor blade tests deliver, in accordance with IEC requirements, meaningful statements in just a few months about whether a rotor blade can withstand a service life of 20 years undamaged. Compared to the existing testing hall for 70 meter blades, which has been in operation since 2009 and is already operating at full capacity, the new facility not only provides the space for very long rotor blades to be tested but also features a tiltable mounting block.

As this huge steel block can assume an angle of tilt of up to 20 degrees, the tips of even very large blades can be bent by 30 meters. The block also facilitates the mounting of the rotor blades. With the ability to test rotor blades that are, for example, being designed for large 10 MW wind turbines, Fraunhofer IWES is well equipped for the future: “This 90 meter test facility will certainly see us through the coming years and takes into account the current trend towards large rotor blades“, says Prof. Dr. Andreas Reuter, Director of the Fraunhofer IWES in Bremerhaven. Instead of having large generators, the focus will be on larger rotors. This will allow more hours of operation at full load and this is the reason for the change in emphasis, explains Reuter. The main challenge here is to realize aerodynamic efficiency without notable extra weight and additional costs.

The requirements of industry have been taken into account in the design of the test stand: A steering committee, comprising representatives from industry, have supervised the project from the initial planning stage right through to the operational phase. For example, new combinations of materials and new rotor blade designs can now be tested before they are taken into series production. This work is often also undertaken via publicly funded research projects. “We are developing innovative testing and monitoring methods that demonstrate to customers how rotor blades perform under realistic loads,” explains Dr. Arno van Wingerde, Head of the Competence Center for Rotor Blades at Fraunhofer IWES.

The first test began just a few days after the celebration to mark the start-up of operations. As the new test stand is already in high demand, the next expansion step is not long away: This autumn another mounting block will be installed in the 90 meter testing hall.

Britta Rollert | Fraunhofer-Institut
Further information:
http://www.iwes.fraunhofer.de

Further reports about: IWES XXL rotor blade rotor blade prototypes test facility wind turbine

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>