Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer ISE Strengthens Research Activities for Solar Thermal Systems

11.09.2012
Dr. Wolfgang Kramer Takes Position at Solar Research Institute in Freiburg

The solar thermal research area at the Fraunhofer Institute for Solar Energy Systems ISE develops not only main system components like collectors, storage and heat exchangers but also works on making the systems more efficient.

A central focus of the R&D is to achieve an optimal interplay between the singular components in the system in consideration of the varying supply of solar heat and the demand for useful heat. Since July 2012, Dr. Wolfgang Kramer is head of the department “Thermal System Technology” at Fraunhofer ISE.

Solar thermal systems are used for heating potable water, for space heating in residential and commercial buildings and as a heat supply for industrial processes. They are also used to provide energy for heat engines or chillers that generate electricity or cold respectively. By adding this staff position, the largest European solar research institute recognized for its long-term success in the development of solar thermal collectors expands its activities in this branch. “Dr. Wolfgang Kramer’s expertise in the field strengthens our team. His many years of experience in the industry complement our focus on applied research excellently,” says Dr. Werner Platzer, Division Director, Solar Thermal and Optics.

The majority of all solar thermal systems are used for water heating and space heating. For agriculture, business and industry, however, process heat from large solar thermal systems is becoming more attractive. Depending on the system, operating temperatures of up to several hundred degrees Celcius can be generated. Here an enormous potential for substituting fossil fuel driven plants with solar thermal energy exists. With the addition of Dr. Wolfgang Kramer and the newly founded department “Thermal System Technology” in 2012, Fraunhofer ISE is now optimally positioned. “The institute has all the necessary components and system competence in place. These include, in particular, the areas of material science, component design and construction, fabrication processes, testing and verification procedures, theoretical modeling and simulation as well as system controls and operation for the various applications. The wide range of services we offer to our customers is unique in the field,” says Kramer about his new workplace.

About the person

The process engineer Dr. Wolfgang Kramer studied at the University of Stuttgart and Manchester. His doctoral thesis entitled “Evaporation of Mixtures on High Power Heat Exchanger Surfaces” was carried out at the Technical University Berlin at the Institute for Energy Technology. He started his professional career at Scheerle AG, an engineering company for pump technology. Afterwards, he was employed by the auto parts supplier Behr GmbH & Co. KG first as development engineer and later as department head in the advanced development for coolant chillers and intercoolers. Before he transferred to Fraunhofer ISE, Kramer worked for six years at Wagner & Co. Solartechnik GmbH, a solar systems supplier. There he first worked as a development engineer for system technology products in the area of solar thermal. Then he became the department head of “Development Solar Thermal, Pellet Technology and Photovoltaics.”

Karin Schneider | EurekAlert!
Further information:
http://www.ise.fraunhofer.de/en

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>