Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

03.09.2015

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power supplies (UPS) for electrical devices.


New materials boost efficiency: Fraunhofer ISE develops three-phase 10 kW UPS inverter with a volume of just five liters and an efficiency of 98.7 percent.

© Fraunhofer ISE


Efficiency of the UPS inverter demonstrator developed by Fraunhofer ISE at different output powers.

© Fraunhofer ISE

The demonstrator, which contains innovative silicon carbide components, was developed in cooperation with an industry partner and achieved an efficiency of 98.7 percent. The research and development findings can be applied to other areas of electronic power conversion in which weight and efficiency play a key role, e. g. electric mobility or portable power supply.

UPS inverters ensure that electrical devices continue to be supplied with power during disruptions to the power grid. In combination with a battery, they allow electrical power outages of varying lengths to be bypassed. For particularly critical loads, such as computer centers, online UPSs offer the highest protection as they are connected between the grid and the load and are thus able to compensate for any disruptions stemming from the grid.

This does mean, however, that all energy is transferred via the UPS inverter even during periods of disruption-free operation. Efficiency therefore plays a very important role for this application, as it is closely connected with the costs required to operate the UPS. This context provided the starting point for the Fraunhofer ISE project, which has now been successfully completed.

Compact and highly efficient in one

Using silicon carbide (SiC) transistors, scientists were able to showcase a UPS inverter with an output of 10 kW and a volume of just five liters. Despite its highly compact design, the inverter still achieved a very high efficiency of 98.7 percent. The good dynamic and static properties of the SiC transistors, such as on-state resistance and switching loss, permit a switching frequency of 100 kHz.

This is around five times higher than that of conventional power electronic silicon components, yet does not significantly increase losses in the semiconductors. Thanks to the high switching frequency, the passive elements in the system, such as inductors and capacitors, could also be reduced in size, while the low losses in the semiconductors permitted the implementation of a compact cooling system for the transistors.

Lower costs thanks to higher efficiency

“On the whole, this design saves system-related costs and materials. In comparison to using a conventional clock rate of 16 kHz, we were able to reduce the size and price of the main inductance in our UPS inverter by around two thirds,” says Cornelius Armbruster, development engineer and member of the team “Future devices and high-efficiency converters” at Fraunhofer ISE. For applications in online UPS systems, efficiency is even more important than reducing materials, as it not only compensates short-term voltage dips in the grid, but also ensures that electrical devices are continuously supplied with power via the UPS.

The annual energy demand of a small server room with a typical capacity utilization amounting to half of the rated power of the UPS system is around 44,000 kWh. Depending on the efficiency of the UPS inverter, the energy demand increases to cover the losses that occur in the inverter, thus explaining the considerable impact that UPS inverter efficiency has on operating costs in the form of electricity costs. In comparison to a conventional system with an efficiency of around 97.4 percent, the newly developed demonstrator (98.7 percent) can reduce annual costs by around 40 percent.

Silicon carbide: a material with prospects

For many years, the Fraunhofer Institute for Solar Energy Systems ISE has been researching and developing highly efficient power electronics for renewable energy systems and the application of the latest components made from gallium nitride and silicon carbide. The technology demonstrator showcased by Fraunhofer ISE, which was commissioned by ROHM Semiconductor, once again highlights the potential of these semiconductor materials.

The SiC transistors used in the demonstrator were provided by ROHM Semiconductor, one of the market leaders in the development of silicon carbide semiconductor components. Thanks to this semiconductor material, transistors will be available for even higher currents in the future, allowing systems to achieve considerably higher output powers.

Weitere Informationen:

http://www.ise.fraunhofer.de/en

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>