Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Fracking' in the dark: Biological fallout of shale-gas production still largely unknown

01.08.2014

In the United States, natural-gas production from shale rock has increased by more than 700 percent since 2007. Yet scientists still do not fully understand the industry's effects on nature and wildlife, according to a report in the journal Frontiers in Ecology and the Environment.

As gas extraction continues to vastly outpace scientific examination, a team of eight conservation biologists from various organizations and institutions, including Princeton University, concluded that determining the environmental impact of gas-drilling sites — such as chemical contamination from spills, well-casing failures and other accidents — must be a top research priority.


Eight conservation biologists from various organizations and institutions, including Princeton University, found that shale-gas extraction in the United States has vastly outpaced scientists' understanding of the industry's environmental impact. With shale-gas production projected to surge during the next 30 years, determining and minimizing the industry's effects on nature and wildlife must become a top priority for scientists, industry and policymakers, the researchers said. The photo above shows extensive natural-gas operations at Jonah Field in Wyoming.

Credit: Photo courtesy of EcoFlight

With shale-gas production projected to surge during the next 30 years, the authors call on scientists, industry representatives and policymakers to cooperate on determining — and minimizing — the damage inflicted on the natural world by gas operations such as hydraulic fracturing, or "fracking." A major environmental concern, hydraulic fracturing releases natural gas from shale by breaking the rock up with a high-pressure blend of water, sand and other chemicals, which can include carcinogens and radioactive substances.

"We can't let shale development outpace our understanding of its environmental impacts," said co-author Morgan Tingley, a postdoctoral research associate in the Program in Science, Technology and Environmental Policy in Princeton's Woodrow Wilson School of Public and International Affairs.

"The past has taught us that environmental impacts of large-scale development and resource extraction, whether coal plants, large dams or biofuel monocultures, are more than the sum of their parts," Tingley said.

The researchers found that there are significant "knowledge gaps" when it comes to direct and quantifiable evidence of how the natural world responds to shale-gas operations. A major impediment to research has been the lack of accessible and reliable information on spills, wastewater disposal and the composition of fracturing fluids. Of the 24 American states with active shale-gas reservoirs, only five — Pennsylvania, Colorado, New Mexico, Wyoming and Texas — maintain public records of spills and accidents, the researchers report.

"The Pennsylvania Department of Environmental Protection's website is one of the best sources of publicly available information on shale-gas spills and accidents in the nation. Even so, gas companies failed to report more than one-third of spills in the last year," said first author Sara Souther, a postdoctoral research associate at the University of Wisconsin-Madison.

"How many more unreported spills occurred, but were not detected during well inspections?" Souther asked. "We need accurate data on the release of fracturing chemicals into the environment before we can understand impacts to plants and animals."

One of the greatest threats to animal and plant life identified in the study is the impact of rapid and widespread shale development, which has disproportionately affected rural and natural areas. A single gas well results in the clearance of 3.7 to 7.6 acres (1.5 to 3.1 hectares) of vegetation, and each well contributes to a collective mass of air, water, noise and light pollution that has or can interfere with wild animal health, habitats and reproduction, the researchers report.

"If you look down on a heavily 'fracked' landscape, you see a web of well pads, access roads and pipelines that create islands out of what was, in some cases, contiguous habitat," Souther said. "What are the combined effects of numerous wells and their supporting infrastructure on wide-ranging or sensitive species, like the pronghorn antelope or the hellbender salamander?"

The chemical makeup of fracturing fluid and wastewater is often unknown. The authors reviewed chemical-disclosure statements for 150 wells in three of the top gas-producing states and found that an average of two out of every three wells were fractured with at least one undisclosed chemical. The exact effect of fracturing fluid on natural water systems as well as drinking water supplies remains unclear even though improper wastewater disposal and pollution-prevention measures are among the top state-recorded violations at drilling sites, the researchers found.

"Some of the wells in the chemical disclosure registry were fractured with fluid containing 20 or more undisclosed chemicals," said senior author Kimberly Terrell, a researcher at the Smithsonian Conservation Biology Institute. "This is an arbitrary and inconsistent standard of chemical disclosure."

###

The paper's co-authors also include researchers from the University of Bucharest in Romania, Colorado State University, the University of Washington, and the Society for Conservation Biology. The work was supported by the David H. Smith Fellowship program administered by the Society for Conservation Biology and funded by the Cedar Tree Foundation; and by a Policy Fellowship from the Wilburforce Foundation to the Society for Conservation Biology.

Souther, Sara, Morgan W. Tingley, Viorel D. Popescu, David T.S. Hyman, Maureen E. Ryan, Tabitha A. Graves, Brett Hartl, Kimberly Terrell. 2014. Biotic impacts of energy development from shale: research priorities and knowledge gaps. Frontiers in Ecology and the Environment. Article published online Aug. 1, 2014. DOI: 10.1890/130324.

Morgan Kelly | Eurek Alert!

Further reports about: Biology Conservation Environmental Fracking Princeton accidents dark extraction gaps spills

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>