Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexible, Printable Sensors Detect Underwater Hazards

11.07.2011
Breakthroughs in nanoengineering often involve building new materials or tiny circuits. But a professor at the University of California, San Diego is proving that he can make materials and circuits so flexible that they can be pulled, pushed and contorted – even under water – and still keep functioning properly.

Joseph Wang has successfully printed thick-film electrochemical sensors directly on flexible wetsuit material, paving the way for nano devices to detect underwater explosives or ocean contamination.

“We have a long-term interest in on-body electrochemical monitoring for medical and security applications,” said Wang, a professor in the Department of NanoEngineering in UC San Diego’s Jacobs School of Engineering. “In the past three years we’ve been working on flexible, printable sensors, and the capabilities of our group made it possible to extend these systems for use underwater.”

Wang notes that some members of his team – including electrical-engineering graduate student Joshua Windmiller – are surfers. Given the group’s continued funding from the U.S. Navy, and its location in La Jolla, it was a logical leap to see if it would be possible to print sensors on neoprene, the synthetic-rubber fabric typically used in wetsuits for divers and surfers.

The result: development of “wearable electrochemical sensors for in situ analysis in marine environments.” The paper, published last month in the journal Analyst*, was co-authored by UCSD’s Wang, Windmiller and visiting scholar Gabriela Valdés-Ramírez from Mexico, as well as Michael J. Schöning and Kerstin Malzahn from the Institute of Nano- and Biotechnologies of Germany’s Aachen University of Applied Sciences. (Malzahn is currently a visiting graduate student at UCSD from the German university.)

UCSD has a full U.S. patent pending on the technology, and has begun talks on licensing the system to a Fortune 500 company.

Wang’s 20-person research group is a world leader in the field of printable sensors. But to prove that the sensors printed on neoprene could take a beating and continue working, some of Wang’s colleagues took to the water.

“Anyone trying to take chemical readings under the water will typically have to carry a portable analyzer if they want to detect pollutants,” said Wang, whose group is based in the California Institute for Telecommunications and Information Technology (Calit2) at UCSD. “Instead, we printed a three-electrode sensor directly on the arm of the wetsuit, and inside the neoprene we embedded a 3-volt battery and electronics.”

The electrochemical sensors are based on applying voltage to drive a reduction-oxidation (redox) reaction in a target threat or contaminant – which loses or gains electrons – then measuring the current output. The wearable microsystem provides a visual indication and alert if the levels of harmful contaminants or explosives exceed a pre-defined threshold. It does so by mixing different enzymes into the carbon ink layer before printing on the fabric. (For example, if the enzyme tyrosinase interacts with the pollutant phenol, the LED light switches from green to red.)

The electronics are packed into a device known as a potentiostat that is barely 19mm by 19mm. (The battery is stored on the reverse side of the circuit board.)

In the experiments described in the Analyst article, Wang and his team tested sensors for three potential hazards: a toxic metal (copper); a common industrial pollutant, phenol; and an explosive (TNT). The device also has the potential to detect multiple hazards. “In the paper we used only one electrode,” noted Wang, “but you can have an array of electrodes, each with its own reagent to detect simultaneously multiple contaminants.”

The researchers believe that neoprene is a particularly good fabric on which to print sensors because it is elastic and repels water. It permits high-resolution printing with no apparent defects.

The UCSD team tested the sensor for explosives because of the security hazard highlighted by the 2000 attack on the USS Cole in Yemen. The Navy commonly checks for underwater explosives using a bulky device that a diver must carry underwater to scan the ship’s hull. Using the microsystem developed by Wang and his team, the sensor printed on a wetsuit can quickly and easily alert the diver to nearby explosives.

Wang’s lab has extensive experience printing sensors on flexible fabrics, most recently demonstrating that biosensors printed on the rubber waistband of underwear can be used continuously to monitor the vital signs of soldiers or athletes. The researchers were uncertain, however, about whether bending the printed sensors under water – and in seawater – would still let them continue functioning properly.

In the end, even underwater, and with bending and other deformations, the sensors continued to perform well. “We still need to validate and test it with the Navy,” said Wang. “While the primary security interest will be in the detection of explosives, the Navy in San Diego bay has also detected large concentrations of toxic metals from the paint on Navy ships, so in principle we should be able to print sensors that can detect metals and explosives simultaneously.”

Wang’s work in flexible sensors grew out of 20 years’ experience with innovations in glucose monitoring, ultimately in the form of flexible glucose strips that now account for a $10 billion market worldwide.

Work on the underwater sensors was supported by the Office of Naval Research.

* Wearable electrochemical sensors for in situ analysis in marine environments, Kerstin Malzahn, Joshua Ray Windmiller, Gabriela Valdés-Ramírez, Michael J. Schöning and Joseph Wang, Analyst, June 2011.

Doug Ramsey | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Power and Electrical Engineering:

nachricht System draws power from daily temperature swings
16.02.2018 | Massachusetts Institute of Technology

nachricht Researchers at Kiel University develop extremely sensitive sensor system for magnetic fields
15.02.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>