Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New flat flexible speakers might even help you catch planes & trains

02.04.2009
A groundbreaking new loudspeaker, less than 0.25mm thick, has been developed by University of Warwick engineers, it's flat, flexible, could be hung on a wall like a picture, and its particular method of sound generation could make public announcements in places like passenger terminals clearer, crisper, and easier to hear.

Lightweight and inexpensive to manufacture, the speakers are slim and flexible: they could be concealed inside ceiling tiles or car interiors, or printed with a design and hung on the wall like a picture.

Pioneered by University of Warwick spin-out company, Warwick Audio Technologies' the 'Flat, Flexible Loudspeaker' (FFL) is ideal for public spaces where it delivers planar directional sound waves, which project further than sound from conventional speakers.

Steve Couchman, CEO of Warwick Audio Technologies, believes it could entirely replace the speakers currently used in homes and in cars, as well as in public address systems used in passenger terminals and shopping centres.

He says: "We believe this is a truly innovative technology. Its size and flexibility means it can be used in all sorts of areas where space is at a premium. Audio visual companies are investigating its use as point of sale posters for smart audio messaging and car manufacturers are particularly interested in it for its light weight and thinness, which means it can be incorporated into the headlining of cars, rather than lower down in the interior."

All speakers work by converting an electric signal into sound. Usually, the signal is used to generate a varying magnetic field, which in turn vibrates a mechanical cone, so producing the sound.

Warwick Audio Technology's FFL technology is a carefully designed assembly of thin, conducting and insulating, materials resulting in the development of a flexible laminate, which when excited by an electrical signal will vibrate and produce sound.

The speaker laminate operates as a perfect piston resonator. The entire diaphragm therefore radiates in phase, forming an area source. The wave front emitted by the vibrating surface is phase coherent, producing a plane wave with very high directivity and very accurate sound imaging.

"Another great application would be in PA systems for public spaces," says Steve. "The sound produced by FFLs can be directed straight at its intended audience. The sound volume and quality does not deteriorate as it does in conventional speakers, which means that public announcements in passenger terminals, for example, could be clearer, crisper, and easier to hear."

The FFL was first developed by Dr Duncan Billson and Professor David Hutchins, both from the University of Warwick, with early trials using just two sheets of tinfoil and an insulating layer of baking paper to produce sound. Since then its design has significantly evolved and the technology is now ready for commercial exploitation

The company is currently in negotiations with a number of commercial partners and continues to welcome fresh approaches. It expects to launch its first commercial product later this year.

For further information, please contact:

Peter Dunn or Kelly Parkes Harrison
Communications Office, University House,
University of Warwick, Coventry, CV4 8UW, United Kingdom
email: p.j.dunn@warwick.ac.uk
Tel: +44 (0)24 76 523708 Mobile/Cell: +44 (0)7767 655860

or
Beck Lockwood, Campuspr Midlands Ltd. Tel: 0121 451 1321; mobile: 0778 3802318; email: beck@campusprmidlands.co.uk

Peter Dunn | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>