Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New flat flexible speakers might even help you catch planes & trains

02.04.2009
A groundbreaking new loudspeaker, less than 0.25mm thick, has been developed by University of Warwick engineers, it's flat, flexible, could be hung on a wall like a picture, and its particular method of sound generation could make public announcements in places like passenger terminals clearer, crisper, and easier to hear.

Lightweight and inexpensive to manufacture, the speakers are slim and flexible: they could be concealed inside ceiling tiles or car interiors, or printed with a design and hung on the wall like a picture.

Pioneered by University of Warwick spin-out company, Warwick Audio Technologies' the 'Flat, Flexible Loudspeaker' (FFL) is ideal for public spaces where it delivers planar directional sound waves, which project further than sound from conventional speakers.

Steve Couchman, CEO of Warwick Audio Technologies, believes it could entirely replace the speakers currently used in homes and in cars, as well as in public address systems used in passenger terminals and shopping centres.

He says: "We believe this is a truly innovative technology. Its size and flexibility means it can be used in all sorts of areas where space is at a premium. Audio visual companies are investigating its use as point of sale posters for smart audio messaging and car manufacturers are particularly interested in it for its light weight and thinness, which means it can be incorporated into the headlining of cars, rather than lower down in the interior."

All speakers work by converting an electric signal into sound. Usually, the signal is used to generate a varying magnetic field, which in turn vibrates a mechanical cone, so producing the sound.

Warwick Audio Technology's FFL technology is a carefully designed assembly of thin, conducting and insulating, materials resulting in the development of a flexible laminate, which when excited by an electrical signal will vibrate and produce sound.

The speaker laminate operates as a perfect piston resonator. The entire diaphragm therefore radiates in phase, forming an area source. The wave front emitted by the vibrating surface is phase coherent, producing a plane wave with very high directivity and very accurate sound imaging.

"Another great application would be in PA systems for public spaces," says Steve. "The sound produced by FFLs can be directed straight at its intended audience. The sound volume and quality does not deteriorate as it does in conventional speakers, which means that public announcements in passenger terminals, for example, could be clearer, crisper, and easier to hear."

The FFL was first developed by Dr Duncan Billson and Professor David Hutchins, both from the University of Warwick, with early trials using just two sheets of tinfoil and an insulating layer of baking paper to produce sound. Since then its design has significantly evolved and the technology is now ready for commercial exploitation

The company is currently in negotiations with a number of commercial partners and continues to welcome fresh approaches. It expects to launch its first commercial product later this year.

For further information, please contact:

Peter Dunn or Kelly Parkes Harrison
Communications Office, University House,
University of Warwick, Coventry, CV4 8UW, United Kingdom
email: p.j.dunn@warwick.ac.uk
Tel: +44 (0)24 76 523708 Mobile/Cell: +44 (0)7767 655860

or
Beck Lockwood, Campuspr Midlands Ltd. Tel: 0121 451 1321; mobile: 0778 3802318; email: beck@campusprmidlands.co.uk

Peter Dunn | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>