Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Firefighting Robot Paints

06.06.2013
Engineers in the Coordinated Robotics Lab at the University of California, San Diego, have developed new image processing techniques for rapid exploration and characterization of structural fires by small Segway-like robotic vehicles.
A sophisticated on-board software system takes the thermal data recorded by the robot’s small infrared camera and maps it onto a 3D scene constructed from the images taken by a pair of stereo RGB cameras.

This allows small mobile robotic vehicles to create a virtual reality picture that includes a 3D map and temperature data that can be used immediately by first responders as the robot drives through a building on fire.

The research is part of a plan to develop novel robotic scouts that can help firefighters to assist in residential and commercial blazes. Researchers will present their results at the International Conference on Robotics and Automation to be held from May 31 to June 5, 2014, in Hong Kong.

The robots will map and photograph the interior of burning buildings by using stereo vision. They will use data gathered from various sensors to characterize the state of a fire, including temperatures, volatile gases, and structural integrity while looking for survivors. Working together both collaboratively and autonomously, a number of such vehicles would quickly develop an accurate augmented virtual reality picture of the building interior. They would then provide it in near real time to rescuers, who could better assess the structure and plan their firefighting and rescue activities. Bewley’s dynamics and control team has already built the first vehicle prototype, essentially a self-righting Segway-like vehicle that can climb stairs.

“These robot scouts will be small, inexpensive, agile, and autonomous,” said Thomas Bewley, a professor of mechanical engineering at the Jacobs School of Engineering at UC San Diego. “Firefighters arriving at the scene of a fire have 1000 things to do. To be useful, the robotic scouts need to work like well-trained hunting dogs, dispatching quickly and working together to achieve complex goals while making all necessary low-level decisions themselves along the way to get the job done.”

This project represents a collaboration between researchers at the Jacobs School of Engineering and the University of Illinois at Urbana-Champaign, the San Diego Fire-Rescue Department, and local corporate partners. The team has applied for large block funding from the National Science Foundation Robotics Initiative to sustain this effort. But significant preliminary work has been conducted to get the research in motion even before this proposal was submitted. This interdisciplinary effort also involves:

- computer scientists in Prof. Yoav Freund’s lab developing software for robotic mapping in smoky and partially obstructed spaces,

- nanoengineers in Prof. Deli Wang’s lab developing an “electronic nose” capable of detecting volatile organic compounds, and

- researchers at the University of Illinois addressing the inherent human interface and obstacle avoidance problems.

Engineers at San Diego-based ATA Engineering, L-P3 and Brain Corporation are also closely involved.

Ioana Patringenaru | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>