Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finnish research organisation VTT combines mobile phone technology and microscopy

15.02.2012
A pocket-size microscope accessory developed by Finnish scientists will be accurate to one hundredth of a millimeter

VTT Technical Research Centre of Finland, the leading multi-technological applied research organisation in Northern Europe, has developed an optical accessory that turns an ordinary camera phone into a high-resolution microscope. The device is accurate to one hundredth of a millimetre.

Among those who will benefit from the device are the printing industry, consumers, the security business, and even health care professionals. A new Finnish enterprise called KeepLoop Oy and VTT are already exploring the commercial potential of the invention. The first industrial applications and consumer models will be released in early 2012.

The operation of the device is based on images produced by the combined effect of an LED light and an optical lens. Various surfaces and structures can be examined in microscopic detail and the phone's camera used to take sharp, high-resolution images that can be forwarded as MMS messages.

An ordinary mobile phone turns into an instant microscope by attaching a thin, magnetic microscope module in front of the camera's normal lens. The device fits easily in the user's pocket, unlike conventional tubular microscopes.

The plastic macro lens of the mobile phone microscope magnifies objects effectively. The camera's field of view is 2 x 3 millimetres. A number of LEDs have been sunk into the outer edge of the lens, allowing objects to be illuminated from different angles. Images illuminated from several different angles could be used to produce 3D topographic maps, for example, with mobile phone software. The 3D maps would be accurate to one hundredth of a millimetre.

The competitive edge of the product is based on next-generation lens technology, the compact and user-friendly structure, and customisable extra features.

The mobile phone microscope is suited for examining surfaces and surroundings, for security, health care, and even games

The mobile phone microscope could also be used to study surface formations, especially in the printing industry as part of quality control and in field conditions. In the security business the device could be used, for example, to read microcode in various logistics systems, while it is also suited for studying security markings, and for authenticating products as genuine as part of brand protection. The microscope is capable of detecting hidden symbols in products that are not visible to the naked eye.

The device can also be applied to study of the environment. Consumers could use the instant microscope when out and about to examine the leaves of trees and plants, for example, or study insects. Another potential application is in examining textile structures such as strands of hair, or the fibrous structure of paper.

The device also has uses in social media, and in community-based hybrid media where traditional forms of media are used in combination with each other. There are also several potential applications in the gaming world.

Pictures: http://www.vtt.fi/news/2011/09032009.jsp

Further information:

VTT Technical Research Centre of Finland
Janne Suhonen
Key Account Manager
Tel. 358-20-722-2298
janne.suhonen@vtt.fi
KeepLoop Oy
Jaakko Raukola
Managing Director
Tel. 358-40-527-2684
jaakko.raukola@keeploop.com
Further information on VTT:
Olli Ernvall, Senior Vice President, Communications
Tel. 358-20-722-6747
olli.ernvall@vtt.fi
http://www.vtt.fi
VTT Technical Research Centre of Finland is a leading multitechnological applied research organization in Northern Europe. VTT creates new technology and science-based innovations in co-operation with domestic and foreign partners. VTT's turnover is EUR 290 million and its personnel totals 3,100.

KeepLoop Oy is a new innovative company based in Tampere, Finland. The company develops optoelectronic accessories for mobile telephones around the world. The company's target groups are both the industrial sector and consumers. By working together, VTT Technical Research Centre of Finland and KeepLoop have been able to produce a package that combines the scientific study of technology and commercial potential.

Janne Suhonen | EurekAlert!
Further information:
http://www.vtt.fi

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>