Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finnish research organisation VTT combines mobile phone technology and microscopy

15.02.2012
A pocket-size microscope accessory developed by Finnish scientists will be accurate to one hundredth of a millimeter

VTT Technical Research Centre of Finland, the leading multi-technological applied research organisation in Northern Europe, has developed an optical accessory that turns an ordinary camera phone into a high-resolution microscope. The device is accurate to one hundredth of a millimetre.

Among those who will benefit from the device are the printing industry, consumers, the security business, and even health care professionals. A new Finnish enterprise called KeepLoop Oy and VTT are already exploring the commercial potential of the invention. The first industrial applications and consumer models will be released in early 2012.

The operation of the device is based on images produced by the combined effect of an LED light and an optical lens. Various surfaces and structures can be examined in microscopic detail and the phone's camera used to take sharp, high-resolution images that can be forwarded as MMS messages.

An ordinary mobile phone turns into an instant microscope by attaching a thin, magnetic microscope module in front of the camera's normal lens. The device fits easily in the user's pocket, unlike conventional tubular microscopes.

The plastic macro lens of the mobile phone microscope magnifies objects effectively. The camera's field of view is 2 x 3 millimetres. A number of LEDs have been sunk into the outer edge of the lens, allowing objects to be illuminated from different angles. Images illuminated from several different angles could be used to produce 3D topographic maps, for example, with mobile phone software. The 3D maps would be accurate to one hundredth of a millimetre.

The competitive edge of the product is based on next-generation lens technology, the compact and user-friendly structure, and customisable extra features.

The mobile phone microscope is suited for examining surfaces and surroundings, for security, health care, and even games

The mobile phone microscope could also be used to study surface formations, especially in the printing industry as part of quality control and in field conditions. In the security business the device could be used, for example, to read microcode in various logistics systems, while it is also suited for studying security markings, and for authenticating products as genuine as part of brand protection. The microscope is capable of detecting hidden symbols in products that are not visible to the naked eye.

The device can also be applied to study of the environment. Consumers could use the instant microscope when out and about to examine the leaves of trees and plants, for example, or study insects. Another potential application is in examining textile structures such as strands of hair, or the fibrous structure of paper.

The device also has uses in social media, and in community-based hybrid media where traditional forms of media are used in combination with each other. There are also several potential applications in the gaming world.

Pictures: http://www.vtt.fi/news/2011/09032009.jsp

Further information:

VTT Technical Research Centre of Finland
Janne Suhonen
Key Account Manager
Tel. 358-20-722-2298
janne.suhonen@vtt.fi
KeepLoop Oy
Jaakko Raukola
Managing Director
Tel. 358-40-527-2684
jaakko.raukola@keeploop.com
Further information on VTT:
Olli Ernvall, Senior Vice President, Communications
Tel. 358-20-722-6747
olli.ernvall@vtt.fi
http://www.vtt.fi
VTT Technical Research Centre of Finland is a leading multitechnological applied research organization in Northern Europe. VTT creates new technology and science-based innovations in co-operation with domestic and foreign partners. VTT's turnover is EUR 290 million and its personnel totals 3,100.

KeepLoop Oy is a new innovative company based in Tampere, Finland. The company develops optoelectronic accessories for mobile telephones around the world. The company's target groups are both the industrial sector and consumers. By working together, VTT Technical Research Centre of Finland and KeepLoop have been able to produce a package that combines the scientific study of technology and commercial potential.

Janne Suhonen | EurekAlert!
Further information:
http://www.vtt.fi

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>