Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finnish research organisation VTT combines mobile phone technology and microscopy

15.02.2012
A pocket-size microscope accessory developed by Finnish scientists will be accurate to one hundredth of a millimeter

VTT Technical Research Centre of Finland, the leading multi-technological applied research organisation in Northern Europe, has developed an optical accessory that turns an ordinary camera phone into a high-resolution microscope. The device is accurate to one hundredth of a millimetre.

Among those who will benefit from the device are the printing industry, consumers, the security business, and even health care professionals. A new Finnish enterprise called KeepLoop Oy and VTT are already exploring the commercial potential of the invention. The first industrial applications and consumer models will be released in early 2012.

The operation of the device is based on images produced by the combined effect of an LED light and an optical lens. Various surfaces and structures can be examined in microscopic detail and the phone's camera used to take sharp, high-resolution images that can be forwarded as MMS messages.

An ordinary mobile phone turns into an instant microscope by attaching a thin, magnetic microscope module in front of the camera's normal lens. The device fits easily in the user's pocket, unlike conventional tubular microscopes.

The plastic macro lens of the mobile phone microscope magnifies objects effectively. The camera's field of view is 2 x 3 millimetres. A number of LEDs have been sunk into the outer edge of the lens, allowing objects to be illuminated from different angles. Images illuminated from several different angles could be used to produce 3D topographic maps, for example, with mobile phone software. The 3D maps would be accurate to one hundredth of a millimetre.

The competitive edge of the product is based on next-generation lens technology, the compact and user-friendly structure, and customisable extra features.

The mobile phone microscope is suited for examining surfaces and surroundings, for security, health care, and even games

The mobile phone microscope could also be used to study surface formations, especially in the printing industry as part of quality control and in field conditions. In the security business the device could be used, for example, to read microcode in various logistics systems, while it is also suited for studying security markings, and for authenticating products as genuine as part of brand protection. The microscope is capable of detecting hidden symbols in products that are not visible to the naked eye.

The device can also be applied to study of the environment. Consumers could use the instant microscope when out and about to examine the leaves of trees and plants, for example, or study insects. Another potential application is in examining textile structures such as strands of hair, or the fibrous structure of paper.

The device also has uses in social media, and in community-based hybrid media where traditional forms of media are used in combination with each other. There are also several potential applications in the gaming world.

Pictures: http://www.vtt.fi/news/2011/09032009.jsp

Further information:

VTT Technical Research Centre of Finland
Janne Suhonen
Key Account Manager
Tel. 358-20-722-2298
janne.suhonen@vtt.fi
KeepLoop Oy
Jaakko Raukola
Managing Director
Tel. 358-40-527-2684
jaakko.raukola@keeploop.com
Further information on VTT:
Olli Ernvall, Senior Vice President, Communications
Tel. 358-20-722-6747
olli.ernvall@vtt.fi
http://www.vtt.fi
VTT Technical Research Centre of Finland is a leading multitechnological applied research organization in Northern Europe. VTT creates new technology and science-based innovations in co-operation with domestic and foreign partners. VTT's turnover is EUR 290 million and its personnel totals 3,100.

KeepLoop Oy is a new innovative company based in Tampere, Finland. The company develops optoelectronic accessories for mobile telephones around the world. The company's target groups are both the industrial sector and consumers. By working together, VTT Technical Research Centre of Finland and KeepLoop have been able to produce a package that combines the scientific study of technology and commercial potential.

Janne Suhonen | EurekAlert!
Further information:
http://www.vtt.fi

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>