Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings suggest nanowires ideal for electronics manufacturing

14.11.2008
Researchers from IBM and Purdue University have discovered that tiny structures called silicon nanowires might be ideal for manufacturing in future computers and consumer electronics because they form the same way every time.

The researchers used an instrument called a transmission electron microscope to watch how nanowires made of silicon "nucleate," or begin to form, before growing into wires, said Eric Stach, an assistant professor of materials engineering at Purdue University.

The work is based at IBM's Thomas J. Watson Research Center in Yorktown Heights, N.Y., and at Purdue's Birck Nanotechnology Center in the university's Discovery Park. The research is funded by the National Science Foundation through the NSF's Electronic and Photonic Materials Program in the Division of Materials Research.

The nucleation process can be likened to the beginning of ice forming in a pool of water placed in a freezer. The liquid undergoes a "phase transition," changing from the liquid to the solid phase.

"What's unusual about this work is that we are looking at these things on an extremely small scale," Stach said. "The three major findings are that you can see that the nucleation process on this small scale is highly repeatable, that you can measure and predict when it's going to occur, and that those two facts together give you a sense that you could confidently design systems to manufacture these nanowires for electronics."

It was the first time researchers had made such precise measurements of the nucleation process in nanowires, he said.

Findings will be detailed in a research paper appearing Friday (Nov. 14) in the journal Science. The paper was written by Purdue doctoral student Bong Joong Kim, Stach and IBM materials scientists Frances Ross, Jerry Tersoff, Suneel Kodambaka and Mark Reuter from the physical sciences department at the Watson Research Center.

The silicon nanowires begin forming from tiny gold nanoparticles ranging in size from 10 to 40 nanometers, or billionths of a meter. By comparison, a human red blood cell is more than 100 times larger than the gold particles.

The gold particles are placed in the microscope's vacuum chamber and then exposed to a gas containing silicon, and the particles act as a catalyst to liberate silicon from the gas to form into solid wires. The particles are heated to about 600 degrees Celsius, or more than 1,100 degrees Fahrenheit, causing them to melt as they fill with silicon from the gas. With increasing exposure, the liquid gold eventually contains too much silicon and is said to become "supersaturated," and the silicon precipitates as a solid, causing the nanowire to begin forming.

"We found that there is a single nucleation event in each little droplet and that all of the nucleation events occur in a very controllable fashion," Stach said. "The implication is that if you are trying to create electronic devices based on these technologies, you could actually predict when things are going to start their crystal growth process. You can see that it's going to happen the same way every time, and thus that there is some potential for doing things in a repeatable fashion in electronics manufacturing."

Although the researchers studied silicon, the same findings could be applied to manufacturing nanowires made of other semiconducting materials. The electron microscope is the only instrument capable of observing the nanowire nucleation process, which would have to be a thousand times larger to be seen with a light microscope, Stach said.

Nanowires might enable engineers to solve a problem threatening to derail the electronics industry. New technologies will be needed for industry to keep pace with Moore's law, an unofficial rule stating that the number of transistors on a computer chip doubles about every 18 months, resulting in rapid progress in computers and telecommunications. Doubling the number of devices that can fit on a computer chip translates into a similar increase in performance. However, it is becoming increasingly difficult to continue shrinking electronic devices made of conventional silicon-based semiconductors.

"In something like five to, at most, 10 years, silicon transistor dimensions will have been scaled to their limit," Stach said.

Transistors made of nanowires represent one potential way to continue the tradition of Moore's law.

"Nanowires of silicon and things like gallium arsenide, gallium nitride or indium arsenide, or other types of exotic semiconductors, are being investigated as a step toward continuing to scale electronics down," Stach said. "If you want to manufacture devices made of nanowires, make them the same way every time on a 12-inch wafer, then you need to understand the basic physics of how to start their growth, the kinetics of their continued growth, how to quantify that, how to understand it. We are looking at all steps in nucleation."

One challenge to using nanowires in electronics will be replacing gold as a catalyst with other metals that are better suited for the electronics industry, Stach said.

The gold particles are created inside the microscope chamber, but future research may use gold nanoparticles manufactured to more uniform standards using a different technology.

The research was conducted using an IBM microscope. The researchers also are extending the observations using a transmission electron microscope at the Birck Nanotechnology Center to look at smaller nanoparticles.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Source: Eric Stach, (765) 494-1466, eastach@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>