Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Figuring Out Flow Dynamics

01.08.2013
Engineers gain insight into turbulence formation and evolution in fluids

Turbulence is all around us—in the patterns that natural gas makes as it swirls through a transcontinental pipeline or in the drag that occurs as a plane soars through the sky.


Turbulence structure gets more complicated as an increasing number of modes are added together.
Credit: Caltech / McKeon Lab

Reducing such turbulence on say, an airplane wing, would cut down on the amount of power the plane has to put out just to get through the air, thereby saving fuel. But in order to reduce turbulence—a very complicated phenomenon—you need to understand it, a task that has proven to be quite a challenge.

Since 2006, Beverley McKeon, professor of aeronautics and associate director of the Graduate Aerospace Laboratories at the California Institute of Technology (Caltech) and collaborator Ati Sharma, a senior lecturer in aerodynamics and flight mechanics at the University of Southampton in the U.K., have been working together to build models of turbulent flow. Recently, they developed a new and improved way of looking at the composition of turbulence near walls, the type of flow that dominates our everyday life.

Their research could lead to significant fuel savings, as a large amount of energy is consumed by ships and planes, for example, to counteract turbulence-induced drag. Finding a way to reduce that turbulence by 30 percent would save the global economy billions of dollars in fuel costs and associated emissions annually, says McKeon, a coauthor of a study describing the new method published online in the Journal of Fluid Mechanics on July 8.

"This kind of turbulence is responsible for a large amount of the fuel that is burned to move humans, freight, and fluids such as water, oil, and natural gas, around the world," she says. "[Caltech physicist Richard] Feynman described turbulence as 'one of the last unsolved problems of classical physics,' so it is also a major academic challenge."

Wall turbulence develops when fluids—liquid or gas—flow past solid surfaces at anything but the slowest flow rates. Progress in understanding and controlling wall turbulence has been somewhat incremental because of the massive range of scales of motion involved—from the width of a human hair to the height of a multi-floor building in relative terms—says McKeon, who has been studying turbulence for 16 years. Her latest work, however, now provides a way of analyzing a large-scale flow by breaking it down into discrete, more easily analyzed bits.

McKeon and Sharma devised a new method of looking at wall turbulence by reformulating the equations that govern the motion of fluids—called the Navier-Stokes equations—into an infinite set of smaller, simpler subequations, or "blocks," with the characteristic that they can be simply added together to introduce more complexity and eventually get back to the full equations. But the benefit comes in what can be learned without needing the complexity of the full equations. Calling the results from analysis of each one of those blocks a "response mode," the researchers have shown that commonly observed features of wall turbulence can be explained by superposing, or adding together, a very small number of these response modes, even as few as three.

In 2010, McKeon and Sharma showed that analysis of these blocks can be used to reproduce some of the characteristics of the velocity field, like the tendency of wall turbulence to favor eddies of certain sizes and distributions. Now, the researchers also are using the method to capture coherent vortical structure, caused by the interaction of distinct, horseshoe-shaped spinning motions that occur in turbulent flow. Increasing the number of blocks included in an analysis increases the complexity with which the vortices are woven together, McKeon says. With very few blocks, things look a lot like the results of an extremely expensive, real-flow simulation or a full laboratory experiment, she says, but the mathematics are simple enough to be performed, mode-by-mode, on a laptop computer.

"We now have a low-cost way of looking at the 'skeleton' of wall turbulence," says McKeon, explaining that similar previous experiments required the use of a supercomputer. "It was surprising to find that turbulence condenses to these essential building blocks so easily. It's almost like discovering a lens that you can use to focus in on particular patterns in turbulence."

Using this lens helps to reduce the complexity of what the engineers are trying to understand, giving them a template that can be used to try to visually—and mathematically—identify order from flows that may appear to be chaotic, she says. Scientists had proposed the existence of some of the patterns based on observations of real flows; using the new technique, these patterns now can be derived mathematically from the governing equations, allowing researchers to verify previous models of how turbulence works and improve upon those ideas.

Understanding how the formulation can capture the skeleton of turbulence, McKeon says, will allow the researchers to modify turbulence in order to control flow and, for example, reduce drag or noise.

"Imagine being able to shape not just an aircraft wing but the characteristics of the turbulence in the flow over it to optimize aircraft performance," she says. "It opens the doors for entirely new capabilities in vehicle performance that may reduce the consumption of even renewable or non-fossil fuels."

Funding for the research outlined in the Journal of Fluid Mechanics paper, titled "On coherent structure in wall turbulence," was provided by the Air Force Office of Scientific Research. The paper is the subject of a "Focus on Fluids" feature article that will appear in an upcoming print issue of the same journal and was written by Joseph Klewicki of the University of New Hampshire.

Written by Katie Neith

Contact:
Brian Bell
(626) 395-5832
mr@caltech.edu

Brian Bell | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>