Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster computers, electronic devices possible after scientists create large-area graphene on copper

11.05.2009
The creation of large-area graphene using copper may enable the manufacture of new graphene-based devices that meet the scaling requirements of the semiconductor industry, leading to faster computers and electronics, according to a team of scientists and engineers at The University of Texas at Austin.

Their work titled "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils" was published today online in Science Express in advance of its print publication in the journal Science.

"Graphene could lead to faster computers that use less power, and to other sorts of devices for communications such as very high-frequency (radio-frequency-millimeter wave) devices," said Professor and physical chemist Rod Ruoff, one of the corresponding authors on the Science article.

"Graphene might also find use as optically transparent and electrically conductive films for image display technology and for use in solar photovoltaic electrical power generation."

Graphene, an atom-thick layer of carbon atoms bonded to one another in a "chickenwire" arrangement of hexagons, holds great potential for nanoelectronics, including memory, logic, analog, opto-electronic devices and potentially many others. It also shows promise for electrical energy storage for supercapacitors and batteries, for use in composites, for thermal management, in chemical-biological sensing and as a new sensing material for ultra-sensitive pressure sensors.

"There is a critical need to synthesize graphene on silicon wafers with methods that are compatible with the existing semiconductor industry processes," Ruoff said. "Doing so will enable nanoelectronic circuits to be made with the exceptional efficiencies that the semiconductor industry is well known for."

Graphene can show very high electron- and hole-mobility; as a result, the switching speed of nanoelectronic devices based on graphene can in principle be extremely high. Also, graphene is "flat" when placed on a substrate (or base material) such as a silicon wafer and, thus, is compatible with the wafer-processing approaches of the semiconductor industry. The exceptional mechanical properties of graphene may also enable it to be used as a membrane material in nanoelectromechanical systems, as a sensitive pressure sensor and as a detector for chemical or biological molecules or cells.

The university researchers, including post-doctoral fellow Xuesong Li, and Luigi Colombo, a TI Fellow from Texas Instruments, Inc., grew graphene on copper foils whose area is limited only by the furnace used. They demonstrated for the first time that centimeter-square areas could be covered almost entirely with mono-layer graphene, with a small percentage (less than five percent) of the area being bi-layer or tri-layer flakes. The team then created dual-gated field effect transistors with the top gate electrically isolated from the graphene by a very thin layer of alumina, to determine the carrier mobility. The devices showed that the mobility, a key metric for electronic devices, is significantly higher than that of silicon, the principal semiconductor of most electronic devices, and comparable to natural graphite.

"We used chemical-vapor deposition from a mixture of methane and hydrogen to grow graphene on the copper foils," said Ruoff. "The solubility of carbon in copper being very low, and the ability to achieve large grain size in the polycrystalline copper substrate are appealing factors for its use as a substrate --along with the fact that the semiconductor industry has extensive experience with the use of thin copper films on silicon wafers. By using a variety of characterization methods we were able to conclude that growth on copper shows significant promise as a potential path for high quality graphene on 300-millimeter silicon wafers."

The university's effort was funded in part by the state of Texas, the South West Academy for Nanoelectronics (SWAN) and the DARPA CERA Center. Electrical and computer engineering Professor Sanjay Banerjee, a co-author of the Science paper, directs both SWAN and the DARPA Center.

"By having a materials scientist of Colombo's caliber with such extensive knowledge about all aspects of semiconductor processing and now co-developing the materials science of graphene with us, I think our team exemplifies what collaboration between industrial scientists and engineers with university personnel can be," said Ruoff, who holds the Cockrell Family Regents Chair #7. "This industry-university collaboration supports both the understanding of the fundamental science as well its application."

Other co-authors of the work not previously mentioned include: research associate Richard Piner of the Department of Mechanical Engineering; Assistant Professor Emanuel Tutuc of the Department of Electrical and Computer Engineering; post-doctoral fellows Jinho An, Weiwei Cai, Inhwa Jung, Aruna Velamakanni and Dongxing Yang in the Department of Mechanical Engineering; and graduate students Seyoung Kim and Junghyo Nah in the Department of Electrical and Computer Engineering.

To read more about Ruoff's work, visit: http://bucky-central.me.utexas.edu/. For Banerjee's work, go to: www.mrc.utexas.edu/banerjee.html, and for more information on Tutuc's research, visit: http://nano.ece.utexas.edu/.

Rod Ruoff | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>