Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster computers, electronic devices possible after scientists create large-area graphene on copper

11.05.2009
The creation of large-area graphene using copper may enable the manufacture of new graphene-based devices that meet the scaling requirements of the semiconductor industry, leading to faster computers and electronics, according to a team of scientists and engineers at The University of Texas at Austin.

Their work titled "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils" was published today online in Science Express in advance of its print publication in the journal Science.

"Graphene could lead to faster computers that use less power, and to other sorts of devices for communications such as very high-frequency (radio-frequency-millimeter wave) devices," said Professor and physical chemist Rod Ruoff, one of the corresponding authors on the Science article.

"Graphene might also find use as optically transparent and electrically conductive films for image display technology and for use in solar photovoltaic electrical power generation."

Graphene, an atom-thick layer of carbon atoms bonded to one another in a "chickenwire" arrangement of hexagons, holds great potential for nanoelectronics, including memory, logic, analog, opto-electronic devices and potentially many others. It also shows promise for electrical energy storage for supercapacitors and batteries, for use in composites, for thermal management, in chemical-biological sensing and as a new sensing material for ultra-sensitive pressure sensors.

"There is a critical need to synthesize graphene on silicon wafers with methods that are compatible with the existing semiconductor industry processes," Ruoff said. "Doing so will enable nanoelectronic circuits to be made with the exceptional efficiencies that the semiconductor industry is well known for."

Graphene can show very high electron- and hole-mobility; as a result, the switching speed of nanoelectronic devices based on graphene can in principle be extremely high. Also, graphene is "flat" when placed on a substrate (or base material) such as a silicon wafer and, thus, is compatible with the wafer-processing approaches of the semiconductor industry. The exceptional mechanical properties of graphene may also enable it to be used as a membrane material in nanoelectromechanical systems, as a sensitive pressure sensor and as a detector for chemical or biological molecules or cells.

The university researchers, including post-doctoral fellow Xuesong Li, and Luigi Colombo, a TI Fellow from Texas Instruments, Inc., grew graphene on copper foils whose area is limited only by the furnace used. They demonstrated for the first time that centimeter-square areas could be covered almost entirely with mono-layer graphene, with a small percentage (less than five percent) of the area being bi-layer or tri-layer flakes. The team then created dual-gated field effect transistors with the top gate electrically isolated from the graphene by a very thin layer of alumina, to determine the carrier mobility. The devices showed that the mobility, a key metric for electronic devices, is significantly higher than that of silicon, the principal semiconductor of most electronic devices, and comparable to natural graphite.

"We used chemical-vapor deposition from a mixture of methane and hydrogen to grow graphene on the copper foils," said Ruoff. "The solubility of carbon in copper being very low, and the ability to achieve large grain size in the polycrystalline copper substrate are appealing factors for its use as a substrate --along with the fact that the semiconductor industry has extensive experience with the use of thin copper films on silicon wafers. By using a variety of characterization methods we were able to conclude that growth on copper shows significant promise as a potential path for high quality graphene on 300-millimeter silicon wafers."

The university's effort was funded in part by the state of Texas, the South West Academy for Nanoelectronics (SWAN) and the DARPA CERA Center. Electrical and computer engineering Professor Sanjay Banerjee, a co-author of the Science paper, directs both SWAN and the DARPA Center.

"By having a materials scientist of Colombo's caliber with such extensive knowledge about all aspects of semiconductor processing and now co-developing the materials science of graphene with us, I think our team exemplifies what collaboration between industrial scientists and engineers with university personnel can be," said Ruoff, who holds the Cockrell Family Regents Chair #7. "This industry-university collaboration supports both the understanding of the fundamental science as well its application."

Other co-authors of the work not previously mentioned include: research associate Richard Piner of the Department of Mechanical Engineering; Assistant Professor Emanuel Tutuc of the Department of Electrical and Computer Engineering; post-doctoral fellows Jinho An, Weiwei Cai, Inhwa Jung, Aruna Velamakanni and Dongxing Yang in the Department of Mechanical Engineering; and graduate students Seyoung Kim and Junghyo Nah in the Department of Electrical and Computer Engineering.

To read more about Ruoff's work, visit: http://bucky-central.me.utexas.edu/. For Banerjee's work, go to: www.mrc.utexas.edu/banerjee.html, and for more information on Tutuc's research, visit: http://nano.ece.utexas.edu/.

Rod Ruoff | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>