Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast-Recharge, Lithium-Ion Battery Could be Perfect for Electric Cars

01.04.2011
The next-generation battery, like next-generation TV, may be 3-D, scientists reported here today at the 241st National Meeting and Exposition of the American Chemical Society (ACS). They described a new lithium-ion (Li-ion) battery, already available in a prototype version, with a three-dimensional interior architecture that could be perfect for the electric cars now appearing in auto dealer showrooms.

The 3-D Li-ion battery recharges in minutes, rather than hours, and could bring closer the day in which electric cars can recharge as quickly as gas-powered vehicles “fill it up” at the pump. The 3-D format could be the basis for more powerful, longer-lasting batteries for scores of other rechargeable electronic devices, scientists said.

Study leader Amy Prieto, Ph.D., said the research team has a 3-D prototype, about the size of a cell phone battery, that takes about 12 minutes to recharge compared to two hours for a conventional lithium-ion battery. The battery also can be discharged over twice as many times as a conventional lithium ion battery at high discharge rates, she added.

“The time needed to recharge cell phones, laptops and other electronics products certainly can be an occasional nuisance,” Prieto noted. “However, it certainly doesn’t keep anyone from buying these products. Recharge time may be a much more important factor for electric cars. You make a rest stop on the turnpike, and you want to recharge quickly, just like you fill-it-up at the gas pump. It’s going to take a new generation of batteries to do so, and we hope our 3-D battery is poised to be at the forefront. If our battery works to its potential, it could be the ideal battery for an electric car.”

Prieto’s research at Colorado State University in Fort Collins, Colo., is part of a larger scientific quest to improve Li-ion batteries, which already outperform their nickel-cadmium (NiCad) cousins in many ways. Li-ion batteries, for instance, pack twice as much energy per ounce as NiCads; their high cell voltage of 3.6 volts allows battery pack designs with only one cell, and there is no “memory effect” that limits a Li-ion’s ability to fully recharge.

Their solution involves a fundamental change in the battery’s interior. Conventional Li-ions are composed of graphite, a form of carbon that serves as the anode (negative electrode), a lithium compound that serves as the cathode (positive electrode), and an electrolyte that separates the electrodes. The electrodes are arranged in multiple, thin layers, like a stack of pancakes. Lithium ions (electrically charged particles of lithium) move from the carbon anode through the electrolyte to the lithium cathode during discharge and back when recharging. However, that configuration accounts for the Li-ion’s major disadvantages: They tend to recharge slowly, have a limited life (about two years), and require special built-in circuits to prevent overheating.

Preito’s team did some reconfiguring in an attempt solve these problems. They replaced the graphite anode with nanowires of copper antimonide, a metallic material composed of copper and antimony. The nanowires, each barely 1/50,000th the width of a single human hair, have an enormous surface area and can store twice as many lithium ions as the same amount of graphite per unit volume. The nanowires also are more chemically stable than graphite and also more heat resistant.

Their prototype 3-D battery is about the size of a cell phone battery. Inside the battery, they arranged the nanowires into a tightly-packed, three-dimensional structure resembling the bristles of a hair brush. For the final configuration, the nanowires will be coated with a thin layer of electrolyte — the material the separates the anode from the cathode — and surrounded with conventional cathode material made of lithium.

Laboratory tests showed that the first prototype (which is not interdigitated yet) could recharge in as little as 12 minutes compared to two hours for a standard lithium-ion phone battery. Prieto said the battery should have a life span over double that of existing lithium ion batteries. Commercial versions of the battery would be thinner and lighter than equivalent Li-ion batteries, because the 3-D version holds more lithium per unit volume.

Prieto has co-founded her own company, Prieto Battery, to commercialize the technology and says that the first 3-D batteries could be available to consumers in as little as two years. The scientists acknowledge funding from the National Science Foundation and private donors.

The American Chemical Society is a non-profit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | Newswise Science News
Further information:
http://www.acs.org

More articles from Power and Electrical Engineering:

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>