Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast Electric Car with Double the Motor Power

11.04.2011
In cooperation with RUF Automobile, Siemens researchers have turned a Porsche 911 into a high-performance electric car. What’s special about this automobile is that it can also feed energy back into the electrical network, enabling the vehicle to be integrated into a smart grid. The project, which is funded by the German Environment Ministry, was presented at Hannover Messe 2011, and involves the testing of various drive concepts.

As part of the project, the developers at Siemens Corporate Technology are focusing on two areas: creating a modular powertrain and giving the vehicle a smart charging ability. This research is necessary because electric vehicles need to meet a wide range of requirements before they can be used on a wide scale. Upper-range vehicles, in particular, need to offer high ride comfort, great handling, and, if possible, high speed. In addition, it must be possible to easily integrate the vehicles into future smart grids.


One of the drive concepts is similar to a traditional combustion engine vehicle in that it features a centrally mounted motor. Although this is currently the most common type of electric vehicle, it is also the one with the least flexibility. All of the project’s other concepts have a double motor. In one of them, the two motors are linked and have a manual transmission with two automatically shifting gears. The result is fast acceleration and high top speeds, both of which are important requirements for a sports car. In the second double motor concept, the two motors operate separately. This variant enables torque vectoring, in which controlled individual drive torques are distributed to the rear wheels. The system opens up completely new possibilities with regard to vehicle handling.

The developers plan to use flexible high-performance electronics to hook the vehicle up effectively to a smart grid. These electronic systems will be used for driving the vehicle as well as for charging purposes. It will be possible to charge the vehicle at an output of up to 22 kilowatts and the car will also be able to feed electricity back into the grid. A total of 10 test vehicles will be built. They will be used in tests in Berlin and the greater Munich area in order to gain insights into how the entire vehicle can be further optimized.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/researchnews

Further reports about: Power Plant Technology electric cars electric vehicle

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>