Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Facing tomorrow's challenges for wind energy

26.04.2010
The wind energy industry gathers at Warsaw where the EWEC takes place this year to discuss the latest trends that promise to have an essential impact on future developments. Fraunhofer IWES presents its competencies in the field of wind forecast, grid integration and improved rotor blade testing at the European Wind Energy Conference and Exhibition 2010 (www.ewec2010.info).

The opening of the first German Offshore Wind farm alpha ventus fired the wind industry's imagination. Since the conditions are rough and the reachability is limited out at the sea, wind turbines that were designed for these dynamic loads can assure high availability and therefore profitability.

Fatigue is one of the key design drivers for the design of rotor blades of offshore wind turbines. For larger rotor blades, the swept area increases with the square of the rotor diameter. However, the weight of the blade increases to the third power. Therefore, in-depth knowledge about the failure mechanisms of materials is necessary.

Stefan Wessels, Project engineer at the competence center rotor blades of Fraunhofer IWES presents the results of a detailed fatigue analysis of rotor blades considering non-linear Goodman analysis combined with finite element analysis. "Considering the material properties more in depth and using their capacities, lead to a weight reduction without a reliability reduction", states Wessels.

Not only the material, also the assembly of rotor blades is a critical point that needs profound investigation to as-sure blade design optimization, especially for larger blade lengths. Since the composite parts of a rotor blade are bonded together, the adhesives play a key role in the structure. Stefan Wessels presents a beam scaled test for the evaluation of the structural adhesive bond between the web and spar cap of a MW scale wind turbine blade. In contrast to coupon size testing for the mechanical characterization of the bonding paste, this method takes into account the shape of the bonding line, material thickness variability and the stochastically distributed voids, and above all a more realistic stress distribution in the bond line.

In 2009 about 24 GW of installed wind power capacity was integrated into the German power supply system. The system operator requires accurate and reliable forecasts of the electricity generated by wind turbines for the next hours to days ahead. Fraunhofer IWES works on the development of advanced shortest-term predictions in order to improve accuracy of wind power forecasts, and models for estimations of the forecast uncertainty. "Improved ac-curacy of wind power forecasts in combination with estimations of the forecast uncertainty does not only lead to higher system security but also to attractive cost savings concerning the allocation of balancing power", declares Jan Dobschinski, researcher for signal analysis, model de-velopment and prediction systems at Fraunhofer IWES.

One approach to enable high penetration of wind power is for wind farms or wind farm groups to be operated as far as possible as conventional power plant. "In the German "Renewable Model Region Harz" (RegMod-Harz) wind farms and other renewable energy producers, controllable consumers and energy storage devices will be coupled to a large virtual power plant (VPP)", reports Dr. Kurt Rohrig, head of division Energy Economy and Grid Operation. Beside scheduled energy supply, the VPP will provide ancillary services like frequency and voltage control to ensure the reliability of the power system.

IWES researcher Stefan Faulstich shows that electrical subassemblies are a significant contributor to wind turbine unreliability and the resulting consequences for maintenance procedures. By evaluating empirical data the "reli-ability based maintenance strategy" may identify weak points, find fault propagations and predict remaining life time to optimise maintenance. Therefore, detailed documentation of all maintenance measures and a purposeful structured database are necessary.

A shortest-term wind power prediction with integration of offsite wind speed measurements was presented by Dr. Bernhard Lange, Head of information and prediction systems at Fraunhofer IWES. This forecast of wind power is needed for balancing the feed in of wind power in the electrical grid. Therefore a large effort is done to improve the quality of the forecast and their availability.

In the present study the use of offsite measurements for forecasting is investigated for two aims: To improve the forecast quality, especially at high power classes and to guarantee a high quality forecast even if other input parameters of the forecast system, like actual power measurements, are missing. This forecast system is currently installed at three of four German TSOs.

Britta Rollert | Fraunhofer
Further information:
http://www.iwes.fraunhofer.de

Further reports about: IWES VPP power plant rotor blade wind farms wind power wind turbine

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>