Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New experimental research facility to identify the weakest points of wind turbine blades

21.11.2008
On 25 November a new research facility at Risø DTU will be inaugurated. Here, scientists will be able to experiment with different physical loads on wind turbine blades, corresponding exactly to what the wind does to the blades during a lifetime. The advanced measurements will make it possible to work more focused on design and structure, thus contributing to the development of larger and stronger blades.

With the explosive growth within wind energy and several turbines with blades of 60 meters or more, there is a greater need for research into the design and structure of blades. If you just upgrade the blades without simultaneously optimizing them, the weight will increase faster than the wind turbine performance.

The huge blades get relatively very heavy and therefore uneconomic if you only improve their strength by adding more material. Therefore the scientists are now working with other forms of reinforcement, for example, change of structure and support of the blade precisely where it is weakest.

"By using the latest knowledge and reinforcing the blades, we expect that the weight of tomorrow's blades can be reduced substantially," says Find Mølholt Jensen who is head of the new research test facility. Find Mølholt's PhD thesis focused on this issue, and based on his inventions Risø DTU has patented several reinforcements. One of the inventions, for instance, has proved to increase buckling strength by 30-40 percent. The implementation in the manufacturing process still remains, but Risø DTU hopes that this can be solved together with the manufactures.

Experimental Research Facility for Blade Structure
There is room for a 30-40 meter wind turbine blade in the big hall which now opens with the name Experimental Research Facility for Blade Structure. SSP Technology A/S has donated a 34m blade and the blade has been mounted with different kinds of measuring equipment, which differ significantly from the way traditionally commercial tests are performed today. 3D measuring equipment is funded by DTU globalization funds based on a joint application from Risø DTU, DTU Mechanical Engineering and DTU Civil Engineering.

The many tests and measurements are going to be used to validate seven patents on various structural reinforcements which have been taken out by Risø DTU during the past 3-5 years. They will also make it possible to evaluate and improve the methods which are being used to approve wind turbine blades

The official inauguration will be the festive end of Wind Day 2008 held by the Danish Research Consortium for Wind Energy. Director Henrik Bindslev will be present and there will be lectures on research into blade design.

Hanne Krogh | alfa
Further information:
http://www.risoe.dtu.dk/
http://www.risoe.dtu.dk/News_archives/News/2008/2011_indvielse_vingetestcenter.aspx?sc_lang=en

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>