Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


European project to improve the functionality and reduce the energy consumption of embedded devices

The VIRTICAL project, funded by the EU’s Seventh Framework Programme, is coordinated by the UPV’s Parallel Architectures Group. Seven other European partners participate in it

The vIrtical (Sw/Hw Extensions for Virtualized Heterogeneous) started on July 2011, funded by the European Union's Seventh Framework Program. Eight partners are involved in this project, led by the Parallel Architecture's Group (GAP) at the Universitat Politècnica de Valencia (Spain).

During the last decade embedded devices have invaded our everyday life thanks to the recent advances in wireless networks and the exponential growth in the usage of multimedia applications. Embedded systems are currently present at home (set-top boxes, smartphones, TV set), at work (smartphones, tablets), even when we travel (in-car and in-flight entertainment). These devices provide a wide variety of hardware resources that support adaptivity to a wide variety of applications functionalities and a protected execution environment. Within this context, the designer must not only cope with an exponentially increasing complexity, but also invoke innovative power-aware methodology to reduce the power consumption.

The vIrtical project aims to increase functionality, reliability and security of embedded devices at sustainable cost and power consumption. This is achieved in the vIritical project by extending the virtualization concept of the general-purpose domain to the embedded domain.

Although virtualization is an advanced technology widely used for providing an effective and clean way of isolating applications from hardware in the general-purpose computing domain in order to provide flexibility and security, its application on embedded systems is still in its infancy. The challenge is the virtualization of embedded systems that requires particular approaches meeting tight resource budget and considering their particularities.

In order to expand the virtualization concept to the embedded devices, this project will deliver software/hardware extensions at different layers of the design stack (hardware, operating system, hypervisor and applications) to increase flexibility, programmability, performance, QoS, reliability, security and power saving. This unique integrated approach will allow heterogeneous embedded systems to achieve the aforementioned requirements while meeting the power and cost constraints of embedded systems.

The vIrtical consortium consists of five companies and three Universities from five countries (Spain, Italy, France, Greece and Germany) collaborating in the extension at different levels of the stack design. The presence of major European industrial players of the embedded domain in the consortium will enable rapid commercialisation of the project outputs, enhancing European competitiveness in the embedded market.

About 2.8 million Euros of the budget is provided by European tax payer through the offices of the European Commission, the rest being funded by project partners including the Universitat Politècnica de València, Università di Bologna, STMicroelectronics, Thales, Technological Educational Institute of Crete, SYSGO, ARM, and VOSYS.

Datos de contacto:
Luis Zurano Conches
Unidad de Comunicación Científica-CTT
Universitat Politècnica de València

Luis Zurano Conches | Universitat Politècnica de Valèn
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>