Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European project to improve the functionality and reduce the energy consumption of embedded devices

09.03.2012
The VIRTICAL project, funded by the EU’s Seventh Framework Programme, is coordinated by the UPV’s Parallel Architectures Group. Seven other European partners participate in it

The vIrtical (Sw/Hw Extensions for Virtualized Heterogeneous) started on July 2011, funded by the European Union's Seventh Framework Program. Eight partners are involved in this project, led by the Parallel Architecture's Group (GAP) at the Universitat Politècnica de Valencia (Spain).

During the last decade embedded devices have invaded our everyday life thanks to the recent advances in wireless networks and the exponential growth in the usage of multimedia applications. Embedded systems are currently present at home (set-top boxes, smartphones, TV set), at work (smartphones, tablets), even when we travel (in-car and in-flight entertainment). These devices provide a wide variety of hardware resources that support adaptivity to a wide variety of applications functionalities and a protected execution environment. Within this context, the designer must not only cope with an exponentially increasing complexity, but also invoke innovative power-aware methodology to reduce the power consumption.

The vIrtical project aims to increase functionality, reliability and security of embedded devices at sustainable cost and power consumption. This is achieved in the vIritical project by extending the virtualization concept of the general-purpose domain to the embedded domain.

Although virtualization is an advanced technology widely used for providing an effective and clean way of isolating applications from hardware in the general-purpose computing domain in order to provide flexibility and security, its application on embedded systems is still in its infancy. The challenge is the virtualization of embedded systems that requires particular approaches meeting tight resource budget and considering their particularities.

In order to expand the virtualization concept to the embedded devices, this project will deliver software/hardware extensions at different layers of the design stack (hardware, operating system, hypervisor and applications) to increase flexibility, programmability, performance, QoS, reliability, security and power saving. This unique integrated approach will allow heterogeneous embedded systems to achieve the aforementioned requirements while meeting the power and cost constraints of embedded systems.

The vIrtical consortium consists of five companies and three Universities from five countries (Spain, Italy, France, Greece and Germany) collaborating in the extension at different levels of the stack design. The presence of major European industrial players of the embedded domain in the consortium will enable rapid commercialisation of the project outputs, enhancing European competitiveness in the embedded market.

About 2.8 million Euros of the budget is provided by European tax payer through the offices of the European Commission, the rest being funded by project partners including the Universitat Politècnica de València, Università di Bologna, STMicroelectronics, Thales, Technological Educational Institute of Crete, SYSGO, ARM, and VOSYS.

Datos de contacto:
Luis Zurano Conches
Unidad de Comunicación Científica-CTT
Universitat Politècnica de València
ciencia@upv.es
647422347

Luis Zurano Conches | Universitat Politècnica de Valèn
Further information:
http://www.upv.es

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>