Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European project to improve the functionality and reduce the energy consumption of embedded devices

09.03.2012
The VIRTICAL project, funded by the EU’s Seventh Framework Programme, is coordinated by the UPV’s Parallel Architectures Group. Seven other European partners participate in it

The vIrtical (Sw/Hw Extensions for Virtualized Heterogeneous) started on July 2011, funded by the European Union's Seventh Framework Program. Eight partners are involved in this project, led by the Parallel Architecture's Group (GAP) at the Universitat Politècnica de Valencia (Spain).

During the last decade embedded devices have invaded our everyday life thanks to the recent advances in wireless networks and the exponential growth in the usage of multimedia applications. Embedded systems are currently present at home (set-top boxes, smartphones, TV set), at work (smartphones, tablets), even when we travel (in-car and in-flight entertainment). These devices provide a wide variety of hardware resources that support adaptivity to a wide variety of applications functionalities and a protected execution environment. Within this context, the designer must not only cope with an exponentially increasing complexity, but also invoke innovative power-aware methodology to reduce the power consumption.

The vIrtical project aims to increase functionality, reliability and security of embedded devices at sustainable cost and power consumption. This is achieved in the vIritical project by extending the virtualization concept of the general-purpose domain to the embedded domain.

Although virtualization is an advanced technology widely used for providing an effective and clean way of isolating applications from hardware in the general-purpose computing domain in order to provide flexibility and security, its application on embedded systems is still in its infancy. The challenge is the virtualization of embedded systems that requires particular approaches meeting tight resource budget and considering their particularities.

In order to expand the virtualization concept to the embedded devices, this project will deliver software/hardware extensions at different layers of the design stack (hardware, operating system, hypervisor and applications) to increase flexibility, programmability, performance, QoS, reliability, security and power saving. This unique integrated approach will allow heterogeneous embedded systems to achieve the aforementioned requirements while meeting the power and cost constraints of embedded systems.

The vIrtical consortium consists of five companies and three Universities from five countries (Spain, Italy, France, Greece and Germany) collaborating in the extension at different levels of the stack design. The presence of major European industrial players of the embedded domain in the consortium will enable rapid commercialisation of the project outputs, enhancing European competitiveness in the embedded market.

About 2.8 million Euros of the budget is provided by European tax payer through the offices of the European Commission, the rest being funded by project partners including the Universitat Politècnica de València, Università di Bologna, STMicroelectronics, Thales, Technological Educational Institute of Crete, SYSGO, ARM, and VOSYS.

Datos de contacto:
Luis Zurano Conches
Unidad de Comunicación Científica-CTT
Universitat Politècnica de València
ciencia@upv.es
647422347

Luis Zurano Conches | Universitat Politècnica de Valèn
Further information:
http://www.upv.es

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>