Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European project to improve the functionality and reduce the energy consumption of embedded devices

09.03.2012
The VIRTICAL project, funded by the EU’s Seventh Framework Programme, is coordinated by the UPV’s Parallel Architectures Group. Seven other European partners participate in it

The vIrtical (Sw/Hw Extensions for Virtualized Heterogeneous) started on July 2011, funded by the European Union's Seventh Framework Program. Eight partners are involved in this project, led by the Parallel Architecture's Group (GAP) at the Universitat Politècnica de Valencia (Spain).

During the last decade embedded devices have invaded our everyday life thanks to the recent advances in wireless networks and the exponential growth in the usage of multimedia applications. Embedded systems are currently present at home (set-top boxes, smartphones, TV set), at work (smartphones, tablets), even when we travel (in-car and in-flight entertainment). These devices provide a wide variety of hardware resources that support adaptivity to a wide variety of applications functionalities and a protected execution environment. Within this context, the designer must not only cope with an exponentially increasing complexity, but also invoke innovative power-aware methodology to reduce the power consumption.

The vIrtical project aims to increase functionality, reliability and security of embedded devices at sustainable cost and power consumption. This is achieved in the vIritical project by extending the virtualization concept of the general-purpose domain to the embedded domain.

Although virtualization is an advanced technology widely used for providing an effective and clean way of isolating applications from hardware in the general-purpose computing domain in order to provide flexibility and security, its application on embedded systems is still in its infancy. The challenge is the virtualization of embedded systems that requires particular approaches meeting tight resource budget and considering their particularities.

In order to expand the virtualization concept to the embedded devices, this project will deliver software/hardware extensions at different layers of the design stack (hardware, operating system, hypervisor and applications) to increase flexibility, programmability, performance, QoS, reliability, security and power saving. This unique integrated approach will allow heterogeneous embedded systems to achieve the aforementioned requirements while meeting the power and cost constraints of embedded systems.

The vIrtical consortium consists of five companies and three Universities from five countries (Spain, Italy, France, Greece and Germany) collaborating in the extension at different levels of the stack design. The presence of major European industrial players of the embedded domain in the consortium will enable rapid commercialisation of the project outputs, enhancing European competitiveness in the embedded market.

About 2.8 million Euros of the budget is provided by European tax payer through the offices of the European Commission, the rest being funded by project partners including the Universitat Politècnica de València, Università di Bologna, STMicroelectronics, Thales, Technological Educational Institute of Crete, SYSGO, ARM, and VOSYS.

Datos de contacto:
Luis Zurano Conches
Unidad de Comunicación Científica-CTT
Universitat Politècnica de València
ciencia@upv.es
647422347

Luis Zurano Conches | Universitat Politècnica de Valèn
Further information:
http://www.upv.es

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>