Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU Project e-balance: High efficiency to reduce the overall dirty energy production

19.12.2013
The overall energy consumption and the resulting CO2 production rose in the recent decades causing concerns related to the ecologic changes they induce.

The challenge to overcome these problems became a key area of current and future research activities. The aim of the e-balance EU project is to improve the efficiency and reliability of energy systems by controlling both the energy consumption and production in smart neighbourhoods. The project started in October this year.

Energy efficiency becomes crucial for rational consumption of the available resources and reduction of the CO2 production. But the reduction of energy consumption as the only remedy is only a partial solution that may additionally cause user reluctance. Similar, applying more environment-neutral or renewable energy sources without smart management systems may even cause failures in the energy grid or at least cause the produced energy to be wasted. Introducing intelligent solutions that combine the control of energy production and consumption helps to achieve the best efficiency at the lowest cost.

However, a successful application of such intelligent solutions faces problems due to human factors. The problem space is in fact multidimensional, but can be abstracted as a combination of social, economic and technical aspects. The e-balance project will investigate their interdependencies and propose a technical solution that satisfies the defined socio-economic requirements. The social, economic and technical aspects will be investigated together in order to achieve a mature and holistic solution.

The social aspects to be investigated include:
- Socio-technical development including user requirements and concerns,
- Different levels of user participation and means to increase it,
- Barriers to conduct an effective solution.
From the economic perspective the following aspects will be considered:
- Development of new business opportunities,
- Economic means to increase user participation,
- Legislation reinforcements and corrective measures.
The above mentioned aspects will render the framework for the technical solution. Additionally, the technical solution will provide the following features:
- Support for all kinds of energy source and storage,
- Scalable, fine grained and decentralized energy balancing and demand prediction,
- Security and privacy mechanisms,
- Flexible accounting mechanisms,
- Increased reliability of the energy distribution grid.
The technical solution will be based on available state of the art results and will combine and integrate them after necessary adaptation according to the socio-economic requirements. The proposed energy management platform will be evaluated in realistic scenarios using real world set-ups in Alliander’s microgrid in Bronsbergen, the Netherland and in the EDP Smart Grid in Batalha, Portugal, as well as in simulation. In order to stimulate the exploitation of the results we will provide a manual (guide book) and tools for parties interested in using our solution. These means support them in estimating the improvements they can achieve for a given deployment as well as the initial and run-time costs they can expect.
The project is coordinated by the IHP and is realised together with the following partners:
 INESC INOVAÇÃO - Instituto de Novas Tecnologias (Portugal)
 EDP Distribuição – Energia (Portugal)
 EFACEC – Engenharia e Sistemas SA (Portugal)
 Universität Málaga (Spain)
 CEMOSA - Centro de Estudios de Materiales y Control de Obra (Spain)
 Universität Twente (the Netherlands)
 Alliander N.V. (the Netherlands)
 Information Processing Institute (Poland)
 Universität Lodz (Poland)
 Lesswire AG (Germany).
For further project information:
Prof. Dr. Peter Langendörfer
Project coordinator
Tel: +49 (335) 5625-350
E-Mail: langendoerfer@ihp-microelectronics.com

Heidrun Förster | idw
Further information:
http://www.e-balance-project.eu
http://www.ihp-microelectronics.com

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>