Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU Project e-balance: High efficiency to reduce the overall dirty energy production

19.12.2013
The overall energy consumption and the resulting CO2 production rose in the recent decades causing concerns related to the ecologic changes they induce.

The challenge to overcome these problems became a key area of current and future research activities. The aim of the e-balance EU project is to improve the efficiency and reliability of energy systems by controlling both the energy consumption and production in smart neighbourhoods. The project started in October this year.

Energy efficiency becomes crucial for rational consumption of the available resources and reduction of the CO2 production. But the reduction of energy consumption as the only remedy is only a partial solution that may additionally cause user reluctance. Similar, applying more environment-neutral or renewable energy sources without smart management systems may even cause failures in the energy grid or at least cause the produced energy to be wasted. Introducing intelligent solutions that combine the control of energy production and consumption helps to achieve the best efficiency at the lowest cost.

However, a successful application of such intelligent solutions faces problems due to human factors. The problem space is in fact multidimensional, but can be abstracted as a combination of social, economic and technical aspects. The e-balance project will investigate their interdependencies and propose a technical solution that satisfies the defined socio-economic requirements. The social, economic and technical aspects will be investigated together in order to achieve a mature and holistic solution.

The social aspects to be investigated include:
- Socio-technical development including user requirements and concerns,
- Different levels of user participation and means to increase it,
- Barriers to conduct an effective solution.
From the economic perspective the following aspects will be considered:
- Development of new business opportunities,
- Economic means to increase user participation,
- Legislation reinforcements and corrective measures.
The above mentioned aspects will render the framework for the technical solution. Additionally, the technical solution will provide the following features:
- Support for all kinds of energy source and storage,
- Scalable, fine grained and decentralized energy balancing and demand prediction,
- Security and privacy mechanisms,
- Flexible accounting mechanisms,
- Increased reliability of the energy distribution grid.
The technical solution will be based on available state of the art results and will combine and integrate them after necessary adaptation according to the socio-economic requirements. The proposed energy management platform will be evaluated in realistic scenarios using real world set-ups in Alliander’s microgrid in Bronsbergen, the Netherland and in the EDP Smart Grid in Batalha, Portugal, as well as in simulation. In order to stimulate the exploitation of the results we will provide a manual (guide book) and tools for parties interested in using our solution. These means support them in estimating the improvements they can achieve for a given deployment as well as the initial and run-time costs they can expect.
The project is coordinated by the IHP and is realised together with the following partners:
 INESC INOVAÇÃO - Instituto de Novas Tecnologias (Portugal)
 EDP Distribuição – Energia (Portugal)
 EFACEC – Engenharia e Sistemas SA (Portugal)
 Universität Málaga (Spain)
 CEMOSA - Centro de Estudios de Materiales y Control de Obra (Spain)
 Universität Twente (the Netherlands)
 Alliander N.V. (the Netherlands)
 Information Processing Institute (Poland)
 Universität Lodz (Poland)
 Lesswire AG (Germany).
For further project information:
Prof. Dr. Peter Langendörfer
Project coordinator
Tel: +49 (335) 5625-350
E-Mail: langendoerfer@ihp-microelectronics.com

Heidrun Förster | idw
Further information:
http://www.e-balance-project.eu
http://www.ihp-microelectronics.com

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>