Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU Project e-balance: High efficiency to reduce the overall dirty energy production

19.12.2013
The overall energy consumption and the resulting CO2 production rose in the recent decades causing concerns related to the ecologic changes they induce.

The challenge to overcome these problems became a key area of current and future research activities. The aim of the e-balance EU project is to improve the efficiency and reliability of energy systems by controlling both the energy consumption and production in smart neighbourhoods. The project started in October this year.

Energy efficiency becomes crucial for rational consumption of the available resources and reduction of the CO2 production. But the reduction of energy consumption as the only remedy is only a partial solution that may additionally cause user reluctance. Similar, applying more environment-neutral or renewable energy sources without smart management systems may even cause failures in the energy grid or at least cause the produced energy to be wasted. Introducing intelligent solutions that combine the control of energy production and consumption helps to achieve the best efficiency at the lowest cost.

However, a successful application of such intelligent solutions faces problems due to human factors. The problem space is in fact multidimensional, but can be abstracted as a combination of social, economic and technical aspects. The e-balance project will investigate their interdependencies and propose a technical solution that satisfies the defined socio-economic requirements. The social, economic and technical aspects will be investigated together in order to achieve a mature and holistic solution.

The social aspects to be investigated include:
- Socio-technical development including user requirements and concerns,
- Different levels of user participation and means to increase it,
- Barriers to conduct an effective solution.
From the economic perspective the following aspects will be considered:
- Development of new business opportunities,
- Economic means to increase user participation,
- Legislation reinforcements and corrective measures.
The above mentioned aspects will render the framework for the technical solution. Additionally, the technical solution will provide the following features:
- Support for all kinds of energy source and storage,
- Scalable, fine grained and decentralized energy balancing and demand prediction,
- Security and privacy mechanisms,
- Flexible accounting mechanisms,
- Increased reliability of the energy distribution grid.
The technical solution will be based on available state of the art results and will combine and integrate them after necessary adaptation according to the socio-economic requirements. The proposed energy management platform will be evaluated in realistic scenarios using real world set-ups in Alliander’s microgrid in Bronsbergen, the Netherland and in the EDP Smart Grid in Batalha, Portugal, as well as in simulation. In order to stimulate the exploitation of the results we will provide a manual (guide book) and tools for parties interested in using our solution. These means support them in estimating the improvements they can achieve for a given deployment as well as the initial and run-time costs they can expect.
The project is coordinated by the IHP and is realised together with the following partners:
 INESC INOVAÇÃO - Instituto de Novas Tecnologias (Portugal)
 EDP Distribuição – Energia (Portugal)
 EFACEC – Engenharia e Sistemas SA (Portugal)
 Universität Málaga (Spain)
 CEMOSA - Centro de Estudios de Materiales y Control de Obra (Spain)
 Universität Twente (the Netherlands)
 Alliander N.V. (the Netherlands)
 Information Processing Institute (Poland)
 Universität Lodz (Poland)
 Lesswire AG (Germany).
For further project information:
Prof. Dr. Peter Langendörfer
Project coordinator
Tel: +49 (335) 5625-350
E-Mail: langendoerfer@ihp-microelectronics.com

Heidrun Förster | idw
Further information:
http://www.e-balance-project.eu
http://www.ihp-microelectronics.com

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>