Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ETH Zurich researchers and industry break world record

Researchers at ETH Zurich have broken the magic barrier of one million revolutions per minute in collaboration with motor manufacturer ATE and ball bearings manufacturer myonic. It is the highest rotational speed ever achieved by an electric drive system.

One million revolutions per minute

In future it can be expected that the drill used in material processing will become even faster and the compressor used for vehicles and airplanes even more compact. In order to drive these rotary applications directly, efficiently and in a controlled fashion, there must be electrical drive systems with the appropriate rpm and engine power.

Up to now, industrially-deployed motors have normally reached 250,000 revolutions per minute. Now, however, researchers from ETH Zurich's Department of Power Electronics have developed a drive system in cooperation with its industrial partners that can achieve over 1,000,000 rpm.

Small, low-loss and highly efficient

The new drive system generates an output of 100 watts and is barely bigger than a matchbox. The rotor construction has a titanium shell that is able to withstand extreme centrifugal forces and the ball bearings are optimized for extremely high speeds. Until now, it has been the case that the higher the rotational speed, the more losses there are. But the researchers from ETH Zurich have now managed to solve the problem with an especially low-loss stator. Ultra-thin copper wire is used for the windings which are inserted in a cylinder made of special iron previously unused for machines. In addition, the machine is fed by electronics specifically designed for such engine speeds. "Our aim of breaking the million barrier was clear but the breakthrough was only possible thanks to the new technology," explains Christof Zwyssig, a post-graduate student from the De-partment of Power Electronics at ETH Zurich.

The recipe for success

The drive system was brought to fruition in collaboration with industry. The ma-chine was manufactured by the German company, ATE GmbH, which specializes in the development of highly efficient electrical drives. The ball bearings came from the company, myonic, which is also based in Germany and has been manufacturing high precision miniature ball bearings for over 70 years. The construction of the whole system, the development of the electronics and the regulation of the drive system, however, was developed at ETH Zurich's Department of Power Electronics.

The right turn for smaller cell phones

Based upon the results of this research, Christof Zwyssig and Martin Bartholet, also a post-graduate in the same department, founded the spin-off company, Celeroton, in August 2008. It will make the lab partners industrially viable with a view to providing ultra-high revolution electrical drive systems for different branches of industry and areas of application. Celeroton is set to become a supplier for manufacturers of, for example, fast-spinning drill or milling machines. The trend towards increasingly smaller cell phones and other electrical appliances means that increasingly smaller holes have to be drilled for the electronics. This is only possible using a drive system that boasts a high rotational speed. "In my view, a spin-off company is the most direct way of transferring research results to industry. Our findings will rapidly be converted into concrete applications and products," explains Johann Kolar, Head of the Department of Power Electronics.

Renata Cosby | idw
Further information:

More articles from Power and Electrical Engineering:

nachricht Solid progress in carbon capture
27.10.2016 | King Abdullah University of Science & Technology (KAUST)

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>