Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ETH Zurich researchers and industry break world record

14.11.2008
Researchers at ETH Zurich have broken the magic barrier of one million revolutions per minute in collaboration with motor manufacturer ATE and ball bearings manufacturer myonic. It is the highest rotational speed ever achieved by an electric drive system.

One million revolutions per minute

In future it can be expected that the drill used in material processing will become even faster and the compressor used for vehicles and airplanes even more compact. In order to drive these rotary applications directly, efficiently and in a controlled fashion, there must be electrical drive systems with the appropriate rpm and engine power.

Up to now, industrially-deployed motors have normally reached 250,000 revolutions per minute. Now, however, researchers from ETH Zurich's Department of Power Electronics have developed a drive system in cooperation with its industrial partners that can achieve over 1,000,000 rpm.

Small, low-loss and highly efficient

The new drive system generates an output of 100 watts and is barely bigger than a matchbox. The rotor construction has a titanium shell that is able to withstand extreme centrifugal forces and the ball bearings are optimized for extremely high speeds. Until now, it has been the case that the higher the rotational speed, the more losses there are. But the researchers from ETH Zurich have now managed to solve the problem with an especially low-loss stator. Ultra-thin copper wire is used for the windings which are inserted in a cylinder made of special iron previously unused for machines. In addition, the machine is fed by electronics specifically designed for such engine speeds. "Our aim of breaking the million barrier was clear but the breakthrough was only possible thanks to the new technology," explains Christof Zwyssig, a post-graduate student from the De-partment of Power Electronics at ETH Zurich.

The recipe for success

The drive system was brought to fruition in collaboration with industry. The ma-chine was manufactured by the German company, ATE GmbH, which specializes in the development of highly efficient electrical drives. The ball bearings came from the company, myonic, which is also based in Germany and has been manufacturing high precision miniature ball bearings for over 70 years. The construction of the whole system, the development of the electronics and the regulation of the drive system, however, was developed at ETH Zurich's Department of Power Electronics.

The right turn for smaller cell phones

Based upon the results of this research, Christof Zwyssig and Martin Bartholet, also a post-graduate in the same department, founded the spin-off company, Celeroton, in August 2008. It will make the lab partners industrially viable with a view to providing ultra-high revolution electrical drive systems for different branches of industry and areas of application. Celeroton is set to become a supplier for manufacturers of, for example, fast-spinning drill or milling machines. The trend towards increasingly smaller cell phones and other electrical appliances means that increasingly smaller holes have to be drilled for the electronics. This is only possible using a drive system that boasts a high rotational speed. "In my view, a spin-off company is the most direct way of transferring research results to industry. Our findings will rapidly be converted into concrete applications and products," explains Johann Kolar, Head of the Department of Power Electronics.

Renata Cosby | idw
Further information:
http://www.ethz.ch
http://www.cc.ethz.ch/media/picturelibrary/news/Weltrekord_Drehzahl

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>