Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ETH Zurich researchers and industry break world record

14.11.2008
Researchers at ETH Zurich have broken the magic barrier of one million revolutions per minute in collaboration with motor manufacturer ATE and ball bearings manufacturer myonic. It is the highest rotational speed ever achieved by an electric drive system.

One million revolutions per minute

In future it can be expected that the drill used in material processing will become even faster and the compressor used for vehicles and airplanes even more compact. In order to drive these rotary applications directly, efficiently and in a controlled fashion, there must be electrical drive systems with the appropriate rpm and engine power.

Up to now, industrially-deployed motors have normally reached 250,000 revolutions per minute. Now, however, researchers from ETH Zurich's Department of Power Electronics have developed a drive system in cooperation with its industrial partners that can achieve over 1,000,000 rpm.

Small, low-loss and highly efficient

The new drive system generates an output of 100 watts and is barely bigger than a matchbox. The rotor construction has a titanium shell that is able to withstand extreme centrifugal forces and the ball bearings are optimized for extremely high speeds. Until now, it has been the case that the higher the rotational speed, the more losses there are. But the researchers from ETH Zurich have now managed to solve the problem with an especially low-loss stator. Ultra-thin copper wire is used for the windings which are inserted in a cylinder made of special iron previously unused for machines. In addition, the machine is fed by electronics specifically designed for such engine speeds. "Our aim of breaking the million barrier was clear but the breakthrough was only possible thanks to the new technology," explains Christof Zwyssig, a post-graduate student from the De-partment of Power Electronics at ETH Zurich.

The recipe for success

The drive system was brought to fruition in collaboration with industry. The ma-chine was manufactured by the German company, ATE GmbH, which specializes in the development of highly efficient electrical drives. The ball bearings came from the company, myonic, which is also based in Germany and has been manufacturing high precision miniature ball bearings for over 70 years. The construction of the whole system, the development of the electronics and the regulation of the drive system, however, was developed at ETH Zurich's Department of Power Electronics.

The right turn for smaller cell phones

Based upon the results of this research, Christof Zwyssig and Martin Bartholet, also a post-graduate in the same department, founded the spin-off company, Celeroton, in August 2008. It will make the lab partners industrially viable with a view to providing ultra-high revolution electrical drive systems for different branches of industry and areas of application. Celeroton is set to become a supplier for manufacturers of, for example, fast-spinning drill or milling machines. The trend towards increasingly smaller cell phones and other electrical appliances means that increasingly smaller holes have to be drilled for the electronics. This is only possible using a drive system that boasts a high rotational speed. "In my view, a spin-off company is the most direct way of transferring research results to industry. Our findings will rapidly be converted into concrete applications and products," explains Johann Kolar, Head of the Department of Power Electronics.

Renata Cosby | idw
Further information:
http://www.ethz.ch
http://www.cc.ethz.ch/media/picturelibrary/news/Weltrekord_Drehzahl

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>