Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enterprise PCs work while they sleep – saving energy and money – with new software

24.06.2010
Personal computers in enterprise environments save energy and money by “sleep-working,” thanks to new software called SleepServer created by computer scientists from the University of California, San Diego.

Sleep-working enterprise PCs are accessible via remote connections and maintain their presence on voice over IP, instant messaging, and peer-to-peer networks even though the PCs are in low-power sleep mode. SleepServer can reduce energy consumption on enterprise PCs previously running 24/7 by an average of 60 percent, according to a new peer-reviewed study presented by UC San Diego computer scientists on June 24 at the 2010 USENIX Annual Technical Conference in Boston.

SleepServer creates lightweight virtual images of sleeping PCs, and these pared down images maintain connectivity and respond to applications, such as Voice over IP, instant messaging and peer-to-peer services, on behalf of the sleeping PCs. Each virtual PC image can also enable remote access to the sleeping PC it represents via protocols such as Remote Desktop, VNC and encrypted connections using SSH. SleepServer is compatible with existing networking infrastructure. It is highly scalable, runs on commodity servers, and is cross platform – it works with Windows and different versions of Linux. A MAC OSx version is being developed.

“One of the big benefits of SleepServer is configurable on-demand wakeup. SleepServer enables enterprise PCs to remain asleep for long periods of time while still maintaining the illusion of network connectivity and seamless availability,” explained Yuvraj Agarwal, the UC San Diego Research Scientist in the Department of Computer Science and Engineering who developed SleepServer.

Putting PCs to sleep that routinely run all night and all weekend saves energy and money.

“Reducing the electricity required to run our information technology infrastructure is an absolute must, and our SleepServer technology is an important step in this direction,” said Agarwal. “Our goal with SleepServer is to help buildings with heavy IT-loads reach net-zero energy use – so that these buildings effectively become carbon neutral by generating as much renewable energy as they consume.”

At the 2010 Design Automation Conference on June 17, Agarwal (Ph.D.’09 computer science UCSD) and UC San Diego environmental engineering professor Jan Kleissl presented their calculations on how SleepServer can play an important role in balancing a modern building’s energy consumption and renewable-energy generation over a one-year period.

SleepServer Saves Energy

During September 2009, the energy consumed by the 30 PCs running SleepServer dropped by 27 to 86 percent, with an average savings of 60 percent – when compared to leaving the machines on 24/7. Currently, more than 50 PCs in the UCSD computer science building are running SleepServer.

“I have seen an almost 70 percent energy savings on my PC over the last six months,” said Agarwal.

“According to our measurements, SleepServer provides $60 dollars of cost savings per PC on average over an entire year. By deploying SleepServer across the CSE Department, we expect to save approximately $60,000 dollars annually in direct energy costs alone,” said Rajesh Gupta, Professor and Chair of the Department of Computer Science and Engineering at the UC San Diego Jacobs School of Engineering.

Individual SleepServer users can view their personal energy savings via password-protected energy-use profiles on the UC San Diego Energy Dashboard.

“If you cannot measure energy use, you will not be able to make much headway in reducing your energy footprint,” said Agarwal in a story unveiling Energy Dashboard in March 2010.

SleepServer Basics

When a PC goes into low-power mode, the SleepServer software activates the PC’s lightweight virtual image which then masquerades as the physical PC. The image responds to network events on behalf of the sleeping PC. Virtual PC images have heavily pared down computation and memory resources, and streamlined software applications called “stubs.”

“Our ability to support stateful applications, which continuously communicate state information or perform data transfer over the network, using stubs, is a major differentiator between SleepServer and other solutions aimed at providing smart power management for idle PCs,” said Agarwal.

Hundreds of the lightweight virtual images can populate a single commodity server running SleepServer. Routine network packets addressed to a sleeping PC are routed to its virtual image which then responds appropriately, thus enabling the physical PC to sleep. Individual SleepServer images only wake up the physical PC when it receives a request that the virtual image cannot handle – or has been configured not to handle.

“Our SleepServer architecture is suited to support future applications that may require continuous network presence. This is something that other proxying solutions, like Apple’s Wake-on-Demand or Bonjour SleepProxy, or Microsoft’s Sleep Proxy cannot handle since they typically just wake up the PC on any network request,” said Agarwal. “In addition, these energy-management tools are not geared towards enterprises which require support for a diverse set of hardware and operating systems, which is where the cross-platform and incrementally deployable architecture of SleepServer excels.”

Virtual PCs Work, Physical PCs Sleep

Most of the 30 users in the initial SleepServer deployment had disabled the timers meant to put PCs to sleep automatically when they are not being used because they needed their PCs to remain awake at all times to support a variety of applications, explained Agarwal. “Once we deployed SleepServer, all of our original users were able to put their PCs to sleep, even those running server applications.”

Agarwal, SleepServer’s primary developer, previously developed Somniloquy, a version of this technology that required individual hardware to be installed on each PC. “In effect, we have succeeded in providing similar functionality to Somniloquy but as a software-only solution that can be deployed immediately within enterprises,” said Agarwal.

Throughout 2010, the computer scientists plan to deploy SleepServer across the approximately 1,000 PCs in the Department of Computer Science and Engineering at UC San Diego. The next step will be to deploy SleepServer across the entire campus.

“We are a very heterogeneous department. If SleepServer can support the diverse computing needs of the computer science department, it should be able to support anyone. Most enterprises don’t have eight different versions of operating systems running at the same time,” said Agarwal.

The SleepServer developers recently won a San Diego Clean Tech Innovation and Commercialization grant. Funds from this program support commercialization of clean technology innovations developed at San Diego universities.

Enterprise PCs are not the final destination for SleepServer.

“We are looking to use SleepServer to save energy in enterprise compute servers, and we plan to create an application to help people save energy on home computers.”

“SleepServer: A Software-Only Approach for Reducing the Energy Consumption of PCs within Enterprise Environments,” by Yuvraj Agarwal, Stefan Savage and Rajesh Gupta from the Department of Computer Science and Engineering (CSE) at the UC San Diego Jacobs School of Engineering.

In Proceedings of the USENIX Annual Technical Conference (USENIX ATC '10), June 2010.

IP Information on SleepServer from the UC San Diego Technology Transfer Office
http://invent.ucsd.edu/technology/cases/2008/SD2008-321.shtml

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu
http://www.jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=960

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>