Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced Power Transmission for HVDC

22.11.2013
Siemens is researching new technology to enhance the efficiency of high-voltage direct-current transmission (HVDCT).

This minimizes losses during power transmission and is one of the key technologies required to make better use of renewable sources of energy for the power grid.



A research project launched by Germany's Federal Ministry of Education and Research (BMBF) aims to improve power conversion both at the beginning and the end of the HVDCT line.

Using the technologies under research, the cost of these converter stations could be cut by as much as 20 percent and power density increased by a third. Further synergies will be created when these new technologies are used in conjunction with power generated from wind turbines.

The Siemens global research unit Corporate Technology is coordinating the project. Scheduled to run for three years, "Efficient High-Performance Modules for the Electrical Energy System of the Future" (EHLMOZ) is being funded by the BMBF to the tune of €4.9 million. The remaining project partners are TU Dresden, Infineon Technologies, Curamik Electronics, Nanotest, and Fraunhofer ENAS.

In order to minimize transmission losses, HVDC converter stations convert alternating current into direct current at a very high voltage and then back again. Germany is now planning to construct 2,100 kilometers of HVDCT lines in order to transmit with minimal loss wind power from its coastline to consumers inland. Germany also intends to build further offshore wind turbines with a combined output of 25 gigawatts, scheduled for completion by 2030. This power, too, will be transmitted to the coast via HVDCT.

The latest development in the field of HVDC power conversion is modular multilevel converters. An array of insulated-gate bipolar transistors (IGBTs) and capacitors connected in series incrementally create the desired voltage. The IGBTs are exposed to high and fluctuating currents in the converters over a period of several decades.

These high currents generate considerable heat at the electrical contacts of the components. Fluctuations in current and, as a result, in temperature can cause the wire bonding to lift or solder joints to crack. In turn, short circuits lead to high peak currents that can damage the component and even neighboring modules. To guard against this risk, current systems feature additional power electronics and twin-cell housing.

Areas of research in the EHLMOZ project include new power semiconductor devices that are robust enough to enable a significant reduction in the level of protection currently required. Researchers hope that that an enhanced layout and better connection techniques with large contact surfaces will improve distribution of the thermal load. Other areas of research include measuring techniques for precisely monitoring the temperature in the module and thereby enabling a reduction in the safety margins required.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>