Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced Power Transmission for HVDC

22.11.2013
Siemens is researching new technology to enhance the efficiency of high-voltage direct-current transmission (HVDCT).

This minimizes losses during power transmission and is one of the key technologies required to make better use of renewable sources of energy for the power grid.



A research project launched by Germany's Federal Ministry of Education and Research (BMBF) aims to improve power conversion both at the beginning and the end of the HVDCT line.

Using the technologies under research, the cost of these converter stations could be cut by as much as 20 percent and power density increased by a third. Further synergies will be created when these new technologies are used in conjunction with power generated from wind turbines.

The Siemens global research unit Corporate Technology is coordinating the project. Scheduled to run for three years, "Efficient High-Performance Modules for the Electrical Energy System of the Future" (EHLMOZ) is being funded by the BMBF to the tune of €4.9 million. The remaining project partners are TU Dresden, Infineon Technologies, Curamik Electronics, Nanotest, and Fraunhofer ENAS.

In order to minimize transmission losses, HVDC converter stations convert alternating current into direct current at a very high voltage and then back again. Germany is now planning to construct 2,100 kilometers of HVDCT lines in order to transmit with minimal loss wind power from its coastline to consumers inland. Germany also intends to build further offshore wind turbines with a combined output of 25 gigawatts, scheduled for completion by 2030. This power, too, will be transmitted to the coast via HVDCT.

The latest development in the field of HVDC power conversion is modular multilevel converters. An array of insulated-gate bipolar transistors (IGBTs) and capacitors connected in series incrementally create the desired voltage. The IGBTs are exposed to high and fluctuating currents in the converters over a period of several decades.

These high currents generate considerable heat at the electrical contacts of the components. Fluctuations in current and, as a result, in temperature can cause the wire bonding to lift or solder joints to crack. In turn, short circuits lead to high peak currents that can damage the component and even neighboring modules. To guard against this risk, current systems feature additional power electronics and twin-cell housing.

Areas of research in the EHLMOZ project include new power semiconductor devices that are robust enough to enable a significant reduction in the level of protection currently required. Researchers hope that that an enhanced layout and better connection techniques with large contact surfaces will improve distribution of the thermal load. Other areas of research include measuring techniques for precisely monitoring the temperature in the module and thereby enabling a reduction in the safety margins required.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>