Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Study How Hills, Nearby Turbines Affect Wind Energy Production

15.12.2011
Hui Hu pulled a model wind turbine from the top of an office filing cabinet.

The turbine tower was just 10 inches high. Its three blades were 10 inches in diameter. It was a perfect 1:320 scale reproduction of the 80-meter diameter wind turbines spinning across Iowa, the country’s second-ranked state in installed wind power capacity.

That mini turbine is helping a research team led by Hu, an Iowa State University associate professor of aerospace engineering, understand how hills, valleys and the placement of turbines affect the productivity of onshore wind farms.

While the wind industry has data about offshore turbine performance over flat water – especially from European studies – Hu said there’s little data about the effects of uneven ground on wind turbines.

And so Hu and his research team have created the mini turbines and started running tests in Iowa State’s $1.25 million Aerodynamic/Atmospheric Boundary Layer Wind and Gust Tunnel.

“We want to work with the wind turbine industry to transfer some of our findings,” Hu said. “We can help boost total energy capture. And we can lengthen the lifetimes of wind turbines, making them more efficient.”

The research team led by Hu includes Richard Wlezien, professor and Vance and Arlene Coffman Endowed Chair in Aerospace Engineering; Partha Sarkar, a professor of aerospace engineering, of civil, construction and environmental engineering, and director of Iowa State’s Wind Simulation and Testing Laboratory; Zifeng Yang, a former Iowa State post-doctoral researcher and now an assistant professor at Wright State University in Dayton, Ohio; Wei Tian, a post-doctoral research associate in aerospace engineering; and Ahmet Ozbay, a graduate student in aerospace engineering.

The engineers’ studies are supported by a three-year, $300,000 grant from the National Science Foundation and a two-year, $100,000 grant from the Iowa Alliance for Wind Innovation and Novel Development.

The researchers are using wind tunnel tests to quantify the characteristics of surface winds over hilly terrains, determine the best placement of wind turbines on hilly terrains and find the best design for large wind farms on hilly terrains.

Experiments include:

• Mini generators mounted inside the mini turbine nacelles measure power production

• Sensors mounted at the base of the mini turbines measure the wind loads placed on turbines and turbine towers

• Advanced flow measurements such as particle image velocimetry (which uses a laser and camera to take nearly simultaneous images that show the movement and velocity of individual particles) to measure wind flow fields, the wind vortices created by the tips of turbine blades and the total wind energy captured by the blades.

Hu said preliminary results indicate that wind turbines on hilly terrain are hit with much higher wind loads than turbines on flat terrain. The experiments also show that, compared with turbines on flat ground, wind flowing over hilly terrain recovers its power potential more rapidly as it moves from turbine to turbine.

Data from the wind tunnel indicate a turbine on flat ground in the wake of another turbine at a distance equal to six times the diameter of the turbines loses 13 percent of power production. A turbine in the wake of another with the same downstream distance on hilly ground loses 3 percent of power production.

“That means you can put wind turbines closer together in hilly terrain,” he said.

In November, Hu, Yang and Sarkar published the first paper about their wind-turbine studies – “Visualization of the tip vortices in a wind turbine wake” on the Journal of Visualization’s website. The three researchers also presented findings of their turbine wake studies at the June 2011 Applied Aerodynamics Conference of the American Institute of Aeronautics and Astronautics.

The project’s next steps include building a nine-turbine array in Iowa State’s big wind tunnel to study power production and wind flows through a mini wind farm.

Hu is confident that data from the experiments can be valuable as more and more wind farms are built across Iowa and the country.

“These studies are telling us things we didn’t know before,” Hu said. “And this will help optimize the design of wind turbine layouts with consideration of the terrain.”

Mike Krapfl | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>