Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineers Ornament Graphene with 24-Carat Gold 'Snowflakes,' Improving Its Electrical Properties

In an effort to make graphene more useful in electronics applications, Kansas State University engineers made a golden discovery -- gold "snowflakes" on graphene.

Vikas Berry is a K-State assistant professor of chemical engineering who works with graphene, a carbon material only a single atom thick and discovered just five years ago. To functionalize graphene with gold -- thus controlling its electronics properties -- Berry and Kabeer Jasuja, a K-State doctoral student in chemical engineering, embedded gold on graphene.

To do this, the engineers placed the graphene oxide sheets in a gold ion solution that had a growth catalyst. Here, the atomically thick sheets swim and bathe in a pool of chemicals.

"Graphene-derivatives act like swimming molecular carpets when in solution and exhibit fascinating physiochemical behavior," Berry said. "If we change the surface functionality or the concentration, we can control their properties."

They found that rather than distributing itself evenly over graphene, the gold formed islands on the sheets' surfaces. They named these islands snowflake-shaped gold nanostars, or SFGNs.

"So we started exploring how these gold nanostars are formed," Berry said. "We found out that nanostars with no surface functionality are rather challenging to produce by other chemical processes. We can control the size of these nanostars and have characterized the mechanism of nucleation and growth of these nanostructures. It's similar to the mechanism that forms real snowflakes."

Berry said the presence of graphene is critical for the formation of the gold nanostars. "If graphene is absent, the gold would clump together and settle down as big chunks," he said. "But the graphene helps in stabilizing the gold. This makes the nanostars more useful for electronic applications."

In July, Jasuja and Berry published their work in the journal ACS-Nano.

The discovery of these gold "snowflakes" on graphene shows promise for biological devices as well as electronics. Berry is attaching DNA to these gold islands to make DNA sensors. He is joined by Nihar Mohanty, a doctoral student in chemical engineering, and undergraduate researcher Ashvin Nagaraja, a senior in electrical engineering. Nagaraja is a 2004 Manhattan High School graduate.

Berry said graphene-gold based DNA sensors will have enhanced sensitivity. Chemically reducing graphene oxide to obtain graphene requires harsh chemicals that destroy the DNA.

"Now we can use the harsh chemicals on graphene oxide imbedded with gold to obtain graphene with gold islands. Then we can use these gold islands to functionalize DNA."

Berry also is using graphene in conjunction with microwaves. He and Jasuja are "cooking" the graphene sheets as another way to produce particles on the material's surface.

Some of Berry's other graphene research involves using the modified graphene sheets to compartmentalize a coagulating solution, thus stabilizing it. His group has recently used hydrides to reduce graphene oxide to produce reduced graphene oxide in the matter of a few seconds. The graphene produced in this way can remain stable in the solution for several days. Further results will shortly appear in the journal Small.

Discovered only five years ago, graphene has captured the attention of a large number of researchers who are studying its exceptional electrical, mechanical and optical properties, Berry said. His research group is among the few studying the material's interfacial properties and biological applications.

"We're entering a new era," Berry said. "From the zero-dimensional or one-dimensional molecular or polymer solutions, we are now venturing into the two-dimensional graphene solutions, which have fascinating new properties."

Vikas Berry, 785-532-5519,

Vikas Berry | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>