Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers now understand how complex carbon nanostructures form

10.04.2015

Understanding how nanotube forests are created could lead to advancements in aerospace and biomedical applications

Carbon nanotubes (CNTs) are microscopic tubular structures that engineers "grow" through a process conducted in a high-temperature furnace. The forces that create the CNT structures known as "forests" often are unpredictable and are mostly left to chance. Now, a University of Missouri researcher has developed a way to predict how these complicated structures are formed. By understanding how CNT arrays are created, designers and engineers can better incorporate the highly adaptable material into devices and products such as baseball bats, aerospace wiring, combat body armor, computer logic components and micro sensors used in biomedical applications.


On the left is a scanning electron micrograph of a carbon nanotube forest. The figure on the right is a numerically simulated CNT forest.

Credit: Matt Maschmann

CNTs are much smaller than the width of a human hair and naturally form "forests" when they are created in large numbers (see photo). These forests, held together by a nanoscale adhesive force known as the van der Waals force, are categorized based on their rigidity or how they are aligned. For example, if CNTs are dense and well aligned, the material tends to be more rigid and can be useful for electrical and mechanical applications. If CNTs are disorganized, they tend to be softer and have entirely different sets of properties.

"Scientists are still learning how carbon nanotube arrays form," said Matt Maschmann, assistant professor of mechanical and aerospace engineering in the College of Engineering at MU. "As they grow in relatively dense populations, mechanical forces combine them into vertically oriented assemblies known as forests or arrays. The complex structures they form help dictate the properties the CNT forests possess. We're working to identify the mechanisms behind how those forests form, how to control their formation and thus dictate future uses for CNTs."

... more about:
»CNT »forests »nanostructures »properties »structures

Currently, most models that examine CNT forests analyze what happens when you compress them or test their thermal or conductivity properties after they've formed. However, these models do not take into account the process by which that particular forest was created and struggle to capture realistic CNT forest structure.

Experiments conducted in Maschmann's lab will help scientists understand the process and ultimately help control it, allowing engineers to create nanotube forests with desired mechanical, thermal and electrical properties. He uses modeling to map how nanotubes grow into particular types of forests before attempting to test their resulting properties.

"The advantage of this approach is that we can map how different synthesis parameters, such as temperature and catalyst particle size, influence how nanotubes form while simultaneously testing the resulting CNT forests for how they will behave in one comprehensive simulation," Maschmann said. "I am very encouraged that the model successfully predicts how they are formed and their mechanical behaviors. Knowing how nanotubes are organized and behave will help engineers better integrate CNTs in practical, everyday applications."

###

The study was funded in part by the Missouri Research Board and MU College of Engineering startup funds. "Integrated simulation of active carbon nanotube forest growth and mechanical compression," will be published in the upcoming edition of the journal, Carbon.

Editor's Note: Maschmann has worked with carbon nanotubes for a number of years. His applied carbon nanotube research has looked at their role in electromechanical sensors and as electrical transistors.

For more information, please see:

http://engineering.missouri.edu/2015/03/mae-assistant-professor-working-to-fill-gaps-in-carbon-nanotube-forest-understanding/

and,

http://engineering.missouri.edu/2014/08/mae-assistant-professor-maschmann-earns-award-from-oak-ridge-national-lab/

Media Contact

Jeff Sossamon
sossamonj@missouri.edu
573-882-3346

 @mizzounews

http://www.missouri.edu 

Jeff Sossamon | EurekAlert!

Further reports about: CNT forests nanostructures properties structures

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>