Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering cells for more efficient biofuel production

20.02.2013
Yeast research takes a step toward production of alternatives to gasoline.

In the search for renewable alternatives to gasoline, heavy alcohols such as isobutanol are promising candidates. Not only do they contain more energy than ethanol, but they are also more compatible with existing gasoline-based infrastructure. For isobutanol to become practical, however, scientists need a way to reliably produce huge quantities of it from renewable sources.

MIT chemical engineers and biologists have now devised a way to dramatically boost isobutanol production in yeast, which naturally make it in small amounts. They engineered yeast so that isobutanol synthesis takes place entirely within mitochondria, cell structures that generate energy and also host many biosynthetic pathways. Using this approach, they were able to boost isobutanol production by about 260 percent.

Though still short of the scale needed for industrial production, the advance suggests that this is a promising approach to engineering not only isobutanol but other useful chemicals as well, says Gregory Stephanopoulos, an MIT professor of chemical engineering and one of the senior authors of a paper describing the work in the Feb. 17 online edition of Nature Biotechnology.

“It’s not specific to isobutanol,” Stephanopoulos says. “It’s opening up the opportunity to make a lot of biochemicals inside an organelle that may be much better suited for this purpose compared to the cytosol of the yeast cells.”

Stephanopoulos collaborated with Gerald Fink, an MIT professor of biology and member of the Whitehead Institute, on this research. The lead author of the paper is Jose Avalos, a postdoc at the Whitehead Institute and MIT.

Historically, researchers have tried to decrease isobutanol production in yeast, because it can ruin the flavor of wine and beer. However, “now there’s been a push to try to make it for fuel and other chemical purposes,” says Avalos, the paper’s lead author.

Yeast typically produce isobutanol in a series of reactions that take place in two different cell locations. The synthesis begins with pyruvate, a plentiful molecule generated by the breakdown of sugars such as glucose. Pyruvate is transported into the mitochondria, where it can enter many different metabolic pathways, including one that results in production of valine, an amino acid. Alpha-ketoisovalerate (alpha-KIV), a precursor in the valine and isobutanol biosynthetic pathways, is made in the mitochondria in the first phase of isobutanol production.

Valine and alpha-KIV can be transported out to the cytoplasm, where they are converted by a set of enzymes into isobutanol. Other researchers have tried to express all the enzymes needed for isobutanol biosynthesis in the cytoplasm. However, it’s difficult to get some of those enzymes to function in the cytoplasm as well as they do in the mitochondria.

The MIT researchers took the opposite approach: They moved the second phase, which naturally occurs in the cytoplasm, into the mitochondria. They achieved this by engineering the metabolic pathway’s enzymes to express a tag normally found on a mitochondrial protein, directing the cell to send them into the mitochondria.

This enzyme relocation boosted the production of isobutanol by 260 percent, and yields of two related alcohols, isopentanol and 2-methyl-1-butanol, went up even more — 370 and 500 percent, respectively.

There are likely several explanations for the dramatic increase, the researchers say. One strong possibility, though difficult to prove experimentally, is that clustering the enzymes together makes it more likely that the reactions will occur, Avalos says.

Another possible explanation is that moving the second half of the pathway into the mitochondria makes it easier for the enzymes to snatch up the limited supply of precursors before they can enter another metabolic pathway.

“Enzymes from the second phase, which are naturally out here in the cytoplasm, have to wait to see what comes out of the mitochondria and try to transform that. But when you bring them into the mitochondria, they’re better at competing with the pathways in there,” Avalos says.

The findings could have many applications in metabolic engineering. There are many situations where it could be advantageous to confine all of the steps of a reaction in a small space, which may not only boost efficiency but also prevent harmful intermediates from drifting away and damaging the cell.

The researchers are now trying to further boost isobutanol yields and reduce production of ethanol, which is still the major product of sugar breakdown in yeast.

“Knocking out the ethanol pathway is an important step in making this yeast suitable for production of isobutanol,” Stephanopoulos says. “Then we need to introduce isobutanol synthesis, replacing one with the other, to maintain everything balanced within the cell.”

The research was funded by the National Institutes of Health and Shell Global Solutions.

Written by: Anne Trafton, MIT News Office

Caroline McCall | EurekAlert!
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature
28.06.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Touch Displays WAY-AX and WAY-DX by WayCon
27.06.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>